Summary of the paper

Title Can Domain Adaptation be Handled as Analogies?
Authors Núria Bel and Joel Pocostales
Abstract Aspect identification in user generated texts by supervised text classification might suffer degradation in performance when changing to other domains than the one used for training. For referring to aspects such as quality, price or customer services the vocabulary might differ and affect performance. In this paper, we present an experiment to validate a method to handle domain shifts when there is no available labeled data to retrain. The system is based on the offset method as used for solving word analogy problems in vector semantic models such as word embedding. Despite of the fact that the offset method indeed found relevant analogues in the new domain for the classifier initial selected features, the classifiers did not deliver the expected results. The analysis showed that a number of words were found as analogues for many different initial features. This phenomenon was already described in the literature as 'default words' or 'hubs'. However, our data showed that it cannot be explained in terms of word frequency or distance to the question word, as suggested.
Topics Social Media Processing, Document Classification, Text Categorisation, Opinion Mining / Sentiment Analysis
Full paper Can Domain Adaptation be Handled as Analogies?
Bibtex @InProceedings{BEL18.323,
  author = {Núria Bel and Joel Pocostales},
  title = "{Can Domain Adaptation be Handled as Analogies?}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA