It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected Penn Treebank-style parse trees and includes self-paced reading time data and aligned audio recordings. Here we give an overview of the content of the corpus and release the data.
@InProceedings{FUTRELL18.337, author = {Richard Futrell and Edward Gibson and Harry J. Tily and Idan Blank and Anastasia Vishnevetsky and Steven Piantadosi and Evelina Fedorenko}, title = "{The Natural Stories Corpus}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }