In mid-2017, as part of our activities within the TEI Special Interest Group for Linguists (LingSIG), we submitted to the TEI Technical Council a proposal for a new attribute class that would gather attributes facilitating simple token-level linguistic annotation. With this proposal, we addressed community feedback complaining about the lack of a specific tagset for lightweight linguistic annotation within the TEI. Apart from @lemma and @lemmaRef, up till now TEI encoders could only resort to using the generic attribute @ana for inline linguistic annotation, or to the quite complex system of feature structures for robust linguistic annotation, the latter requiring relatively complex processing even for the most basic types of linguistic features. As a result, there exists now a small set of basic descriptive devices which have been made available at the cost of only very small changes to the TEI tagset. The merit of a predefined TEI tagset for lightweight linguistic annotation is the homogeneity of tagging and thus better interoperability of simple linguistic resources encoded in the TEI. The present paper introduces the new attributes, makes a case for one more addition, and presents the advantages of the new system over the legacy TEI solutions.
@InProceedings{BANSKI18.422, author = {Piotr Banski and Susanne Haaf and Martin Mueller}, title = "{Lightweight Grammatical Annotation in the TEI: New Perspectives}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }