Summary of the paper

Title Arap-Tweet: A Large Multi-Dialect Twitter Corpus for Gender, Age and Language Variety Identification
Authors Wajdi Zaghouani and Anis Charfi
Abstract In this paper, we present Arap-Tweet, which is a large-scale and multi-dialectal corpus of Tweets from 11 regions and 16 countries in the Arab world representing the major Arabic dialectal varieties. To build this corpus, we collected data from Twitter and we provided a team of experienced annotators with annotation guidelines that they used to annotate the corpus for age categories, gender, and dialectal variety. During the data collection effort, we based our search on distinctive keywords that are specific to the different Arabic dialects and we also validated the location using Twitter API. In this paper, we report on the corpus data collection and annotation efforts. We also present some issues that we encountered during these phases. Then, we present the results of the evaluation performed to ensure the consistency of the annotation. The provided corpus will enrich the limited set of available language resources for Arabic and will be an invaluable enabler for developing author profiling tools and NLP tools for Arabic.
Topics Profiling, Corpus (Creation, Annotation, Etc.), Lexicon, Lexical Database
Full paper Arap-Tweet: A Large Multi-Dialect Twitter Corpus for Gender, Age and Language Variety Identification
Bibtex @InProceedings{ZAGHOUANI18.521,
  author = {Wajdi Zaghouani and Anis Charfi},
  title = "{Arap-Tweet: A Large Multi-Dialect Twitter Corpus for Gender, Age and Language Variety Identification}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA