This paper presents a fine-grained error comparison of the English-to-Dutch translations of a commercial neural, phrase-based and rule-based machine translation (MT) system. For phrase-based and rule-based machine translation, we make use of the annotated SCATE corpus of MT errors, enriching it with the annotation of neural MT errors and updating the SCATE error taxonomy to fit the neural MT output as well. Neural, in general, outperforms phrase-based and rule-based systems especially for fluency, except for lexical issues. On the accuracy level, the improvements are less obvious. The target sentence does not always contain traces or clues of content being missing (omissions). This has repercussions for quality estimation or gisting operating only on the monolingual level. Mistranslations are part of another well represented error category, comprising a high number of word-sense disambiguation errors and a variety of other mistranslation errors, making it more complex to annotate or post-edit.
@InProceedings{VAN BRUSSEL18.611, author = {Laura Van Brussel and Arda Tezcan and Lieve Macken}, title = "{A fine-grained error analysis of NMT, SMT and RBMT output for English-to-Dutch}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }