Summary of the paper

Title PronouncUR: An Urdu Pronunciation Lexicon Generator
Authors Haris Bin Zia, Agha Ali Raza and Awais Athar
Abstract State-of-the-art speech recognition systems rely heavily on three basic components: an acoustic model, a pronunciation lexicon and a language model. To build these components, a researcher needs linguistic as well as technical expertise, which is a barrier in low-resource domains. Techniques to construct these three components without having expert domain knowledge are in great demand. Urdu, despite having millions of speakers all over the world, is a low-resource language in terms of standard publically available linguistic resources. In this paper, we present a grapheme-to-phoneme conversion tool for Urdu that generates a pronunciation lexicon in a form suitable for use with speech recognition systems from a list of Urdu words. The tool predicts the pronunciation of words using a LSTM-based model trained on a handcrafted expert lexicon of around 39,000 words and shows an accuracy of 64% upon internal evaluation. For external evaluation on a speech recognition task, we obtain a word error rate comparable to one achieved using a fully handcrafted expert lexicon.
Topics Speech Resource/Database, Tools, Systems, Applications, Lexicon, Lexical Database
Full paper PronouncUR: An Urdu Pronunciation Lexicon Generator
Bibtex @InProceedings{BIN ZIA18.646,
  author = {Haris Bin Zia and Agha Ali Raza and Awais Athar},
  title = "{PronouncUR: An Urdu Pronunciation Lexicon Generator}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA