Summary of the paper

Title Upping the Ante: Towards a Better Benchmark for Chinese-to-English Machine Translation
Authors Christian Hadiwinoto and Hwee Tou Ng
Abstract There are many machine translation (MT) papers that propose novel approaches and show improvements over their self-defined baselines. The experimental setting in each paper often differs from one another. As such, it is hard to determine if a proposed approach is really useful and advances the state of the art. Chinese-to-English translation is a common translation direction in MT papers, although there is not one widely accepted experimental setting in Chinese-to-English MT. Our goal in this paper is to propose a benchmark in evaluation setup for Chinese-to-English machine translation, such that the effectiveness of a new proposed MT approach can be directly compared to previous approaches. Towards this end, we also built a highly competitive state-of-the-art MT system trained on a large-scale training set. Our system outperforms reported results on NIST OpenMT test sets in almost all papers published in major conferences and journals in computational linguistics and artificial intelligence in the past 11 years. We argue that a standardized benchmark on data and performance is important for meaningful comparison.
Topics Evaluation Methodologies, Other, Machine Translation, Speechtospeech Translation
Full paper Upping the Ante: Towards a Better Benchmark for Chinese-to-English Machine Translation
Bibtex @InProceedings{HADIWINOTO18.678,
  author = {Christian Hadiwinoto and Hwee Tou Ng},
  title = "{Upping the Ante: Towards a Better Benchmark for Chinese-to-English Machine Translation}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA