eRulemaking is a means for government agencies to directly reach citizens to solicit their opinions and experiences regarding newly proposed rules. The effort, however, is partly hampered by citizens' comments that lack reasoning and evidence, which are largely ignored since government agencies are unable to evaluate the validity and strength. We present Cornell eRulemaking Corpus -- CDCP, an argument mining corpus annotated with argumentative structure information capturing the evaluability of arguments. The corpus consists of 731 user comments on Consumer Debt Collection Practices (CDCP) rule by the Consumer Financial Protection Bureau (CFPB); the resulting dataset contains 4931 elementary unit and 1221 support relation annotations. It is a resource for building argument mining systems that can not only extract arguments from unstructured text, but also identify what additional information is necessary for readers to understand and evaluate a given argument. Immediate applications include providing real-time feedback to commenters, specifying which types of support for which propositions can be added to construct better-formed arguments.
@InProceedings{PARK18.679, author = {Joonsuk Park and Claire Cardie}, title = "{A Corpus of eRulemaking User Comments for Measuring Evaluability of Arguments}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }