Complement phrases are essential for constructing well-formed sentences in German. Identifying verb complements and categorizing complement classes is challenging even for linguists who are specialized in the field of verb valency. Against this background, we introduce an ML-based algorithm which is able to identify and classify complement phrases of any German verb in any written sentence context. We use a large training set consisting of example sentences from a valency dictionary, enriched with POS tagging, and the ML-based technique of Conditional Random Fields (CRF) to generate the classification models.
@InProceedings{SCHNEIDER18.73, author = {Roman Schneider and Monica Fürbacher}, title = "{GeCoTagger: Annotation of German Verb Complements with Conditional Random Fields}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }