Natural language processing systems have the ability to analyse not only the sentiment of human language, but also the stance of the speaker. Representing this information visually from unevenly distributed and potentially sparse datasets is challenging, in particular when trying to facilitate exploration and knowledge discovery. We present work on a novel visualisation approach for scalable visualisation of sentiment and stance and provide a language resource of e-government public engagement of 9,278 user comments with stance explicitly declared by the author.
@InProceedings{CHAMBERLAIN18.760, author = {Jon Chamberlain and Udo Kruschwitz and Orland Hoeber}, title = "{Scalable Visualisation of Sentiment and Stance}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }