This paper presents a multi-domain interests dataset to train and test Recommender Systems, and the methodology to create the dataset from Twitter messages in English and Italian. The English dataset includes an average of 90 preferences per user on music, books, movies, celebrities, sport, politics and much more, for about half million users. Preferences are either extracted from messages of users who use Spotify, Goodreads and other similar content sharing platforms, or induced from their ”topical” friends, i.e., followees representing an interest rather than a social relation between peers. In addition, preferred items are matched with Wikipedia articles describing them. This unique feature of our dataset provides a mean to derive a semantic categorization of the preferred items, exploiting available semantic resources linked to Wikipedia such as the Wikipedia Category Graph, DBpedia, BabelNet and others.
@InProceedings{DI TOMMASO18.858, author = {Giorgia Di Tommaso and Stefano Faralli and Paola Velardi}, title = "{A Large Multilingual and Multi-domain Dataset for Recommender Systems}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }