This work describes SemR-11, a multi-lingual dataset for evaluating semantic similarity and relatedness for 11 languages (German, French, Russian, Italian, Dutch, Chinese, Portuguese, Swedish, Spanish, Arabic and Persian). Semantic similarity and relatedness gold standards have been initially used to support the evaluation of semantic distance measures in the context of linguistic and knowledge resources and distributional semantic models. SemR-11 builds upon the English gold-standards of Miller & Charles (MC), Rubenstein & Goodenough (RG), WordSimilarity 353 (WS-353), and Simlex-999, providing a canonical translation for them. The final dataset consists of 15,917 word pairs and can be used to support the construction and evaluation of semantic similarity/relatedness and distributional semantic models. As a case study, the SemR-11 test collections was used to investigate how different distributional semantic models built from corpora in different languages and with different sizes perform in computing semantic relatedness similarity and relatedness tasks.
@InProceedings{BARZEGAR18.863, author = {Siamak Barzegar and Brian Davis and Manel Zarrouk and Siegfried Handschuh and André Freitas}, title = "{SemR-11: A Multi-Lingual Gold-Standard for Semantic Similarity and Relatedness for Eleven Languages}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }