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Abstract
Reproducibility is generally regarded as being a requirement for any form of experimental science. Even so, reproduction of research
results is only recently beginning to be practiced and acknowledged. In the context of the REPROLANG 2020 shared task, we contribute
to this trend by reproducing the work reported on by Bohnet et al. (2018) on morphosyntactic tagging. Their meta-BiLSTM model
achieved state-of-the-art results across a wide range of languages. This was done by integrating sentence-level and single-word context
through synchronized training by a meta-model. Our reproduction only partially confirms the main results of the paper in terms of
outperforming earlier models. The results of our reproductions improve on earlier models on the morphological tagging task, but not on
the part-of-speech tagging task. Furthermore, even where we improve on earlier models, we fail to match the F1-scores reported for the
meta-BiLSTM model. Because we chose not to contact the original authors for our reproduction study, the uncertainty about the degree
of parallelism that was achieved between the original study and our reproduction limits the value of our findings as an assessment of
the reliability of the original results. At the same time, however, it underscores the relevance of our reproduction effort in regard to the
reproducibility and interpretability of those findings. The discrepancies between our findings and the original results demonstrate that
there is room for improvement in many aspects of reporting regarding the reproducibility of the experiments. In addition, we suggest

that different reporting choices could improve the interpretability of the results.
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1. Introduction

Determining the state-of-the-art in language related ma-
chine learning is not a trivial task. This issue has been
recognized for some time (Armstrong et al., 2009; [Lops
et al., 2011}, and has recently been receiving more atten-
tion (Dacrema et al., 2019; [Lin, 2019). It can be regarded
as a symptom of the underlying problem of a research and
publication culture that focuses on beating previous bench-
marks while disregarding the need to contribute to scientific
knowledge and understanding (Sculley et al., 2018)).
Judging whether real progress has been made in any field
of machine learning can be difficult because of two main
problems. Firsty, the reported results are not always repro-
ducible without investing an unreasonable amount of time
and effort. Secondly, the comparisons that are made do not
always make sense. This is often because the baseline that
is chosen is generally too weak, or because not enough ef-
fort is made to optimize the baseline.

An inverse relationship between the popularity of a scien-
tific method or model, and the reliability of the reporting
on its results has been argued for (Ioannidis, 2005) and was
empirically demonstrated in some fields of science (Pfeiffer|
and Hoffmann, 2009). The meta-BiLSTM model presented
in the work we reproduce can certainly be considered as
belonging to a class of models that is at the height of its
popularity in the field of machine learning. It is therefore
appropriate to evaluate the adequacy of the baselines that
were chosen to compare the model with. In this case, we
estimate the problem of choosing a weak baseline to be lim-
ited. The results of the paper were compared to outcomes
of a recent shared task in which multiple teams optimized
their own models. These teams obviously have sufficient
incentive to choose a properly competitive method and to
fine-tune it optimally.

In the present work, we therefore focus our attention on
determining the degree to which results reported by Bohnet
et al. (2018) on part-of-speech tagging and morphological
tagging are reproducible. As requested by the organizers
of the REPROLANG 2020 shared task, we obtain the data
and tools based on the information provided in the paper.
‘We use these resources to replicate the main experiments of
the paper as closely as possible. Theoretically, such a close
reproduction of the reported results should be feasible. In
practice, however, this is often not trivial, because many
unreported details of the training and testing procedure can
affect performance (Said and Bellogin, 2014).

In addition to their main experiments, Bohnet et al. (2018))
performed a grid search on one data set, visualized in Fig-
ure 3 of their paper, which was done to investigate the sen-
sitivity of the meta-BiLSTM model to changes in the net-
work size of the word and character model. Instead of test-
ing a large number of hyperparameter settings on one data
set, we test two different network configurations on all data
sets included in our reproduction.

It has already been noted by Bohnet et al. (2018)) that some
data sets on which they report do not contain meaningful
part-of-speech tags, and that for some data sets the mor-
phological tagging task is trivial. We exclude these data
sets from our study. In this way we aim to improve the in-
terpretability of the results in the context of determining the
state-of-the-art.

The non-triviality of closely reproducing results from ma-
chine learning experiments is reflected in our results. We
fail to match the reported results on either of the two tag-
ging tasks using either of the two model configurations. On
the morphological tagging tasks, however, our results still
confirm that the meta-BiLSTM model improves on earlier
models.
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2. Method

For our reproduction, we used only publicly available re-
sources. We did not contact the authors of the original pa-
per. The publicly accessible information on GitHub, how-
ever, does include communication between the authors and
third parties. This source of information was taken into ac-
count in our reproduction effort. A Docker image of our
reproduction experiments is released at:
https://gitlab.com/yhkhoe/rep_meta_
tagger, where the experiments are divided over 8 tagﬂ
v1.2-feats-repl-gpu

(commit ef7e780e3c4ccbad553abd9484fd4a78f4dff9af),
v1.2-feats-rep2-gpu

(commit ef7e780e3c4ccbad553abd9484fd4a78f4dff9af),
vl.2-feats-repl-cpu

(commit 2253edbfe469930ed8bb559539¢eaaf4ea669f2eb),
v1.2-feats-rep2-cpu

(commit 4eacaaal70de7dede0810e0aaa54fdf14cce9be),
v1.2-xtag-repl-gpu

(commit 53666f199e5ea42ebc8b004ef37b09fad5e3a58d),
v1.2-xtag-rep2-gpu

(commit e9bafcO14ccfea29db2d201ffcd146ea2ae7059b),
v1.2-xtag-repl-cpu

(commit 114073fb1d5283deb64918f3fb418ef11da97cOe),
and v1.2-xtag-rep2-cpu

(commit efeb98beObe75598e24a65f5a4cff2ad5dfff4d3).

In line with Dacrema et al. (2019) we only consider
experimental results reproducible if the available source
code requires only minimal modifications to work correctly.
Therefore, we do not replicate the ablation study that is re-
ported on in Tables 5 to 8. Replicating these experiments is
not possible by setting parameters of the model. It would
instead require significant changes to the source code. This
would make the reproduction results much less reliable. We
hope that the authors will still choose to make their model
configurable in a way that makes these experiments easy to
replicate. This seems like an improvement that would re-
quire a modest effort on their part, compared to the effort it
takes for others to implement these modifications.

2.1. Data

We used training/development data from the CoNLL 2017
Shared Task (Zeman et al., 2017aﬂ As was done in the
original paper, we used the versions of the data that al-
ready included morphology predicted by UDPipe (Straka
and Strakova, 2017). This data was already pre-split into
training and development sets. The only exception was
the Galician TreeGal dataset of which the UDPipe enriched
version was not pre-split. We do not know how this was
handled by Bohnet et al. (2018]), and therefore exclude this
data set from our reproduction. This omission only affects
results on the part-of-speech tagging task, as the Galician
TreeGal data was not used for the morphological features
task.

Precomputed word embeddings were used that were pro-

"We include the tags and commit hashses here to fulfill the
requirements of the REPROLANG 2020 shared task

’Training/development data was downloaded from:
http://hdl.handle.net/11234/1-1983

vided with the shared task (Ginter et al., 2017 To evalu-
ate the model, we used test data that was made public after
the shared task ended (Nivre et al., 2017) El

Some of the languages in the data do not have meaningful
XPOS tags. These thirteen language sets are Danish, Span-
ish, Basque, French, French Sequoia, Hungarian, Croatian,
Indonesian, Japanese, Dutch Lassy Small, Norwegian Bok-
maal, Norwegian Nynorsk, and Russian SynTagRus, which
was noted by Bohnet et al. (2018)) in the caption of Ta-
ble 2 of their document. They included the accuracy scores
for these languages in that table, even though they are ex-
cluded from the macro-average. We chose to exclude these
data sets from our reproduction.

It is mentioned by Bohnet et al. (2018)) that the morpholog-
ical tagging task is trivial for some languages. Nonetheless,
they report accuracy scores for these languages and they do
not mention excluding them from the macro-average they
calculated. They also do not provide a list of these lan-
guages. We suggest that excluding the scores on a trivial
tagging tasks can improve the interpretability of the results,
and we therefore do not include the following data sets
in our reporting: Indonesian, Brazilian Portuguese, Chi-
nese, Vietnamese, Japanese, Korean, English LinES, and
Swedish LinES.

Including results for these data sets would only distort
the overview of what constitutes the state-of-the-art for
these tasks, because they can artificially inflate the average
scores. Overall, this means that we include 41 out of 55
data sets in our reproduction of the part-of-speech tagging
results and 46 out of 54 for the morphological features task.

We also do not reproduce the tagging results on the Penn
Treebank. This experiment is not documented to the same
degree as the other experiments. It is, for example, not re-
ported in the paper which word embeddings, if any, were
used for the experiment. In addition, this data set, although
widely used, is not publicly available. We would therefore
not have been able to provide a url to this data as is required
for submissions to the REPROLANG 2020 shared task.

2.2. Model

The model reported on by Bohnet et al. (2018)) uses two
separate, sentence-level recurrent networks to learn context
sensitive initial character and word-based representations.
A meta-level BILSTM model combines these into a unified
representation, which is then used for part-of-speech and
morphological tagging. Note that while the character, word
and meta-models are trained synchronously, their network
architectures, hyperparameters and loss functions are con-
figured individually. Although the authors did not provide a
link to the code in their article, we managed to locate code
on GitHutE] that is based on their paper.

3Word embeddings were downloaded from:
http://hdl.handle.net/11234/1-1989

“*Test data was downloaded from:
http://hdl.handle.net/11234/1-2184

>The code was downloaded from:
https://github.com/google/meta_tagger
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lang. CoNLL | DQM | Meta | Repl | Rep2
cs_cac 95.16 | 95.16 | 96.91 | 96.58 | 96.00
cs 95.86 | 95.86 | 97.28 | 97.34 | 96.88
fi 97.37 | 97.37 | 97.81 | 97.57 | 97.57
sl 9474 | 94.74 | 95.54 | 94.74 | 94.9]
la_ittb 94.79 | 94.79 | 95.56 | 95.40 | 95.44
grc 84.47 | 84.47 | 86.51 | 84.56 | 85.22
bg 96.71 | 96.71 | 97.05 | 96.68 | 96.81
ca 98.58 | 98.58 | 98.72 | 98.58 | 98.55
gre_pro 97.51 | 97.51 | 97.72 | 97.29 | 97.35
pt 83.04 | 83.04 | 84.39 | 83.86 | 83.41
cu 96.20 | 96.20 | 96.49 | 95.76 | 96.18
it 97.93 | 97.93 | 98.08 | 97.88 | 97.94
fa 97.12 | 97.12 | 97.32 | 97.05 | 97.05
ru 96.73 | 96.73 | 96.95 | 96.64 | 96.90
sV 96.40 | 96.40 | 96.64 | 96.31 | 96.40
ko 93.02 | 93.02 | 9345 | 93.37 | 93.27
sk 85.00 | 85.00 | 85.88 | 84.83 | 85.01
nl 90.61 | 90.61 | 91.10 | 90.79 | 90.85
fi_ftb 95.31 | 95.31 | 95.56 | 95.06 | 95.32
de 97.29 | 97.29 | 97.39 | 97.14 | 97.26
tr 93.11 | 93.11 | 93.43 | 93.29 | 93.53
hi 97.01 | 97.01 | 97.13 | 97.03 | 96.89
es_anc 98.73 | 98.73 | 98.78 | 98.71 | 98.69
o 96.98 | 96.98 | 97.08 | 97.07 | 96.96
la_pro 96.93 | 96.93 | 97.00 | 96.70 | 96.72
pl 91.97 | 91.97 | 92.12 | 91.36 | 91.52
ar 87.66 | 87.66 | 87.82 | §7.72 | 87.62
gl 97.50 | 97.50 | 97.53 | 97.27 | 97.39
sv_lines 94.84 | 94.84 | 94.90 | 94.44 | 94.55
cs_cltt 89.98 | 89.98 | 90.09 | 89.05 | 89.70
Iv 80.05 | 80.05 | 80.20 | 79.16 | 79.53
zh 88.40 | 85.07 | 85.10 | 85.17 | 85.02
en_lines 95.41 | 95.41 | 95.39 | 94.94 | 95.02
ur 92.30 | 92.30 | 92.21 | 9229 | 92.15
he 83.24 | 82.45 | 82.16 | 82.20 | 82.01
vi 7542 | 73.56 | 73.12 | 73.26 | 73.29
en 94.82 | 94.82 | 94.66 | 94.60 | 94.50
en_part 95.08 | 95.08 | 94.81 | 94.99 | 95.33
pt_br 98.22 | 98.22 | 98.11 | 98.10 | 98.09
et 95.05 | 95.05 | 94.72 | 94.67 | 94.89
el 97.76 | 97.76 | 97.53 | 97.51 | 97.53
macr-av 91.01 | 9091 | 91.20 | 90.88 | 90.94

Table 1: Results for XPOS tags. Column 1 shows the lan-
guage acronym. Column 2 lists the winning results from
the CoNLL 2017 shared task. The column named DQM
shows the results of [Dozat et al. (2017). The Meta col-
umn contains the results reported by Bohnet et al. (2018).
The last 2 columns are our reproduction scores, using 3
BiLSTM layers for characters and words, a BiLSTM size
of 400 for character, word and meta-models (Repl) or 2
BiLSTM layers for characters and words, a BILSTM size
of 300 for character, word and meta-models (Rep2). The
highest score for each language is in bold. The reproduc-
tion (Repl or Rep2) closest to the original result (Meta) is
in italics.

2.2.1. Model configuration

We tried to replicate the model configuration as closely
as possible, using the selection of hyperparameter values
listed in Table 1 of the original paper. These values are re-
ported to have resulted from optimization using a limited
set of languages. These languages, however, are not listed.
It was slightly confusing that the dropout rates as reported
in the paper are configured as their complements, that is
embedding keeping probabilities, in the model’s configura-
tion file. This naming inconsistency also does not seem to
Serve any purpose.

In addition, information given on GitHub is somewhat con-
tradictory. The README states that “’the settings for the
number of LSTM layers, cells, etc. are smaller than the
sizes used in the paper”. Furthermore, a question concern-
ing the hyperparameters was posted on GitHub by a third
party. In response to this issue, the paper’s first author an-
swers that the configuration file has been updated with val-
ues that should result in similar accuracy scores as reported
in the paper. These values, however, are still lower than
those reported in the paper. We therefore performed two
different reproductions. First we used the configuration re-
ported by Bohnet et al. (2018)) in Table 1, which has three
BiLSTM layers for characters and words, and uses a BiL-
STM size of 400 for the character, word and meta-models.
We then also tried the parameter settings from the source
code repository, which has two BiLSTM layers for char-
acters and words, and uses a BILSTM size of 300 for the
character, word and meta-models. The two reproductions
were configured in the same way in all other respects.

The GitHub README describes the code as being based
on the study we aim to reproduce. However, it implements
a different training scheme. Instead of training in a sin-
gle loop over the word, character and meta-models, it loops
over the three models consecutively. Unfortunately the
training schedule could not be adjusted through the model
configuration settings. Because we chose not to contact the
authors and to make only minimal code adjustments, we
used the code as it was made available.

We configured a maximum value of 1000 early stopping
steps to improve the model. In this case we used the value
from the configuration file on GitHub, as details about how
early stopping was configured were not mentioned in the
paper.

Because we had limited access to processing resources,
we performed our experiments on different systems with
or without a graphics processing unit (GPU). To run the
model without the use of a GPU, we used batch sizes of
40000 for words and 80000 for characters that are defined
in the configuration file on GitHub. As this caused errors
while using a GPU, we used the smaller default batch sizes
of 5000 for words and 10000 for characters in that case.
These are the values that are hard coded as the defaults in
the source code. Because of our processing resource limi-
tations, we were not able to optimize any hyperparameters,
such as the learning rate, that are linked to the batch sizes
by performing a parameter search. Experiments that were
run without a GPU used TensorFlow version 1.14.0. For
experiments that were run on a GPU, we used TensorFlow
version 1.12.0. This earlier version of TensorFlow was used
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because it is the latest release that works with CUDA ver-
sion 9.0, which is the version of the GPU software we had
to work with. All experiments used Python version 2.7.12.

2.3. Evaluation

As was done by [Bohnet et al. (2018), we produced F1-
scores using the official evaluation script from the CoNLL
2017 shared task (Zeman et al., 2017a). We did, however,
need to make some slight adjustments to the script in or-
der for it to properly process the model’s output. We veri-
fied that our changes did not affect F1-scores for the fine-
grained language specific part-of-speech (XPOS) tags and
morphological features by recalculating scores on the sys-
tem outputs (Zeman et al., 2017b) produced by [Dozat et
al. (2017) for the 2017 CoNLL shared task. Our modified
script produced the exact same F1-scores for Czech-CAC
(where |[Bohnet et al. (2018) outperformed earlier models
by the widest margin), Arabic (where all models produced
similar results), and Greek (where Bohnet et al. (2018) was
most outperformed by earlier models). We note that/Bohnet
et al. (2018)) generally, but with some exceptions, label the
F1-scores they report as accuracy scores. We suggest that
more consistent naming of these types of scores could im-
prove the reproducibility and interpretability of experimen-
tal results. It is specifically confusing in this case, because
the evaluation script of the CoNLL 2017 shared task pro-
duces both F1-scores and accuracy scores’|

3. Results
3.1. Part-of-speech tagging results

Our results in Table [I| show the part-of-speech tagging
scores of the meta-BiLSTM model to be reproducible to
a limited degree.

Our comparison of two configurations of the model shows
the parameter values from the paper resulting in scores that
are closest to the reported Fl-scores for 16 out of 41 data
sets, with 2 ties. This indicates that the configuration sug-
gested in the source code repository outperforms the con-
figuration in the paper in terms of matching the reported
scores. The macro-averages confirm this.

Overall we fail to achieve the same F1-scores as those re-
ported by Bohnet et al. (2018)). For the 32 language data
sets where they reported higher scores than earlier models,
our closest reproduction (Rep2) shows lower scores with
only one exception. In 16 of these cases, however, our
results are still better than or equal to those reported by
the CoNLL 2017 shared task winner (Dozat et al., 2017).
For languages where Bohnet et al. (2018)) did not improve
on earlier models, our closest reproduction outperforms the
earlier models on one data set. Overall our most successful
reproduction outperforms the earlier models on only 16 out
of 41 data sets, with 1 tie. The macro-averages of both of
our reproductions are also lower than those for the CoNLL

®Dozat et al. (2017) also label their scores on part-of-speech
tagging and morphological features as accuracy scores. However,
they are correctly labeled as F1-scores in the results of the CoNLL
2017 shared task. We verified that these scores are indeed F1-
scores by generating scores on the system outputs of the shared
task using the official evaluation script.

2017 shared task winners, while only our second reproduc-
tion has a slightly higher macro-average than Dozat et al.
(2017)) across the data sets that we include.

3.2. Morphological tagging results

The results in Table[2]show that our F1-scores are generally
lower than those reported by Bohnet et al. (2018)). How-
ever, our scores are in most cases still higher than those
reported for earlier models.

Our comparison of two model configurations shows the pa-
rameter values from the paper resulting in F1-scores that are
closest to the reported scores for 25 out of 46 data sets, with
1 tie. In contrast with the part-of-speech tagging results,
this indicates that the configuration suggested in the paper
outperforms the configuration in the source code in terms
of matching the F1-scores we aimed to reproduce. Based
on the macro-averages, however, our second reproduction
performs slightly better in achieving scores that equal the
originally reported results. Nonetheless, both reproductions
show macro-averages that outperform the earlier models.
The higher performance of our second reproduction (Rep2)
seems to be largely attributable to a small number of data
sets that show highly variable scores across models, such
as Greek and Hungarian. We therefore discuss how our
first reproduction of the morphological features task (Rep1)
compares to the original model results and to results from
earlier models.

Our first reproduction fails to achieve the same or better
results as the original meta-BiLSTM study with the ex-
ception of four data sets. For the 36 data sets where they
outperformed earlier models, we still outperform those ear-
lier models in 29 cases, with 1 tie (Spanish). We also out-
perform earlier models on one data set where the original
model did not. Overall, we achieve higher scores than ear-
lier models on 30 out of 46 data sets. This means that our
results support the finding that the meta-BiLSTM model
improves on earlier results on the morphological features
task. The macro-average over the data sets included in our
reproduction also confirms this.

4. Conclusion

It seems likely that the parallelism between the original
study and our reproduction is limited in different ways, for
example in terms of the number of early stopping steps, the
ratio between the batch sizes and learning rates, and the
training schedule. This in turn limits the value of our find-
ings as an assessment of the reliability of the original re-
sults. At the same time, however, it makes our reproduction
effort all the more relevant in regard to the reproducibility
and interpretability of those findings, based solely on re-
porting and materials that are publicly available.

The results we report can confirm the main finding of the
work of Bohnet et al. (2018)) in regard to only one of the
tagging tasks. Our reproduction shows that improvement
on earlier results in tagging of morphological features, but
not in part-of-speech tagging.

The variability between the original and reproduced scores,
together with the fact that we outperform all other models
on a small number of data sets, support the suggestion by
Bohnet et al. (2018)) that performance can be increased by
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lang CoNLL | DQM | Meta | Repl | Rep2
cs_cac 90.72 | 94.66 | 96.41 | 95.30 | 95.19
ru_syn 94.55 | 96.70 | 97.53 | 97.13 | 96.88
cs 93.14 | 96.32 | 97.14 | 96.72 | 96.44
la_ittb 94.28 | 96.45 | 97.12 | 96.68 | 96.66
sl 90.08 | 95.26 | 96.03 | 95.30 | 95.20
ca 97.23 | 97.85 | 98.13 | 98.00 | 97.88
fi_ftb 93.43 | 9596 | 96.42 | 96.13 | 95.99
no_bok 95.56 | 96.95 | 97.26 | 9691 | 96.95
grc_pro 90.24 | 91.35 | 92.22 | 91.39 | 91.23
fr_seq 96.10 | 96.62 | 97.62 | 96.92 | 96.90
la_pro 89.22 | 91.52 | 92.35 | 91.80 | 91.72
es_anc 97.72 | 98.15 | 98.32 | 98.22 | 98.14
da 94.83 | 96.62 | 96.94 | 96.68 | 96.60
fi 9243 | 9429 | 94.83 | 94.47 | 94.60
sV 95.15 | 96.52 | 96.84 | 96.60 | 96.75
pt 94.62 | 95.89 | 96.27 | 95.90 | 95.79
grc 88.00 | 90.39 | 91.13 | 90.67 | 90.39
no_nyn 95.25 | 96.79 | 97.08 | 96.66 | 96.72
de 83.11 | 89.78 | 90.70 | 90.00 | 89.48
ru 87.27 | 91.99 | 92.69 | 92.02 | 92.53
hi 91.03 | 90.72 | 91.78 | 93.53 | 93.76
cu 88.90 | 88.93 | 89.82 | 88.59 | 88.86
fa 96.34 | 97.23 | 9745 | 97.20 | 97.21
tr 87.03 | 89.39 | 90.21 | 89.75 | 89.87
en_part 92.69 | 9393 | 94.40 | 94.20 | 94.29
sk 81.23 | 87.54 | 88.48 | 87.17 | 87.75
eu 89.57 | 92.48 | 93.04 | 92.45 | 92.36
es 96.34 | 96.42 | 96.68 | 96.42 | 96.67
ar 87.15 | 85.45 | 88.29 | 87.69 | 87.61
it 97.37 | 97.72 | 97.86 | 97.85 | 97.77
nl_lassy 97.55 | 98.04 | 98.15 | 98.17 | 98.24
nl 90.04 | 92.06 | 92.47 | 92.24 | 92.37
pl 86.53 | 91.71 | 92.14 | 91.85 | 91.44
ur 81.03 | 83.16 | 84.02 | 83.77 | 83.34
bg 96.47 | 97.71 | 97.82 | 97.64 | 97.62
hr 85.82 | 90.64 | 91.50 | 90.81 | 90.66
he 85.06 | 79.34 | 79.76 | 79.54 | 79.66
et 84.62 | 88.18 | 88.25 | 88.34 | 88.22
fr 96.12 | 95.98 | 9598 | 9595 | 96.05
el 99.78 | 99.72 | 99.72 | 99.74 | 99.74
1o 96.24 | 97.26 | 97.26 | 97.13 | 97.10
cs_cltt 87.88 | 90.41 | 90.36 | 89.76 | 89.94
lv 84.14 | 87.00 | 86.92 | 86.21 | 86.70
el 91.37 | 94.00 | 93.92 | 93.53 | 94.15
hu 72.61 | 82.67 | 82.44 | 80.69 | 82.95
en 94.49 | 95.93 | 95.71 | 95.54 | 95.50
macr-av 91.09 | 93.12 | 93.64 | 93.25 | 93.30

Table 2: Fl-scores for morphological features. Column 1
shows the language acronym. Column 2 lists the winning
results from the CoNLL 2017 shared task. The DQM col-
umn shows the results of the reimplementation of |Dozat et
al. (2017) by Bohnet et al. (2018). The Meta column con-
tains the results reported by Bohnet et al. (2018) for their
own model. The results in the Repl and Rep2 columns are
our replicated scores, using 3 BiLSTM layers for charac-
ters and words, a BILSTM size of 400 for character, word
and meta-models (Rep1) or 2 BiLSTM layers for characters
and words, a BiLSTM size of 300 for character, word and
meta-models (Rep2). The highest score for each language
is in bold. The reproduction (Repl or Rep2) closest to the
original result (Meta) is in italics.

means of a grid search on a per model basis. Of course, this
is likely also the case for earlier models.

Our reproduction effort reveals room for improvement in
two main areas. Firstly, more detailed information on how
the model was configured would facilitate reproduction of
the results. More consistent naming conventions between
the paper and information provided in the source code
repository could also contribute to this. Exact detail on how
the published code differed from the paper on which it was
based would also have been helpful. Secondly, we suggest
excluding results that according to the authors are mean-
ingless or constitute a trivial task. Leaving such results out
would facilitate interpretation of the results in terms of de-
termining the state-of-the-art in the field. It would also lead
to a quantitative decrease in the effort required to reproduce
those results.

We conclude that the reproducibility of these type of ma-
chine learning results can be improved. This could be done
by instituting more extensive requirements on the publica-
tion of source code and configuration details, similarly to
how the REPROLANG 2020 shared task requires a work-
ing source code image of the reported results.
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