
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 6841–6851
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

6841

Comparative Study of Sentence Embeddings for Contextual Paraphrasing

Louisa Pragst1, Wolfgang Minker1, Stefan Ultes2
1Ulm University, Ulm, Germany, {louisa.pragst, wolfgang.minker}@uni-ulm.de

2Mercedes-Benz Research & Development, Sindelfingen, Germany, stefan.ultes@daimler.com

Abstract
Paraphrasing is an important aspect of natural-language generation that can produce more variety in the way specific content is presented.
Traditionally, paraphrasing has been focused on finding different words that convey the same meaning. However, in human-human
interaction, we regularly express our intention with phrases that are vastly different regarding both word content and syntactic structure.
Instead of exchanging only individual words, the complete surface realisation of a sentences is altered while still preserving its meaning
and function in a conversation. This kind of contextual paraphrasing did not yet receive a lot of attention from the scientific community
despite its potential for the creation of more varied dialogues. In this work, we evaluate several existing approaches to sentence encoding
with regard to their ability to capture such context-dependent paraphrasing. To this end, we define a paraphrase classification task that
incorporates contextual paraphrases, perform dialogue act clustering, and determine the performance of the sentence embeddings in a
sentence swapping task.
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1. Introduction

Humans show a lot of variance in the way they express
themselves in a conversation. Not only do they change
their phrasing by exchanging words with similar meaning
for each other, often whole sentences are used interchange-
ably although they do not have much in common on a sur-
face level. For example, ‘When will you be home?’ can
be answered by ‘At six.’, ‘At six o’clock.’ or ‘Around six.’.
Those variants can be considered word-level paraphrases.
However, the sentence ‘I just got on the bus.’ can fulfil
the same function of providing the expected time of ar-
rival, while differing greatly with regard to syntactic struc-
ture and the words used. We refer to such sentences that
can fulfil the same function in the context of a conversa-
tion despite being dissimilar in their surface realisation as
contextual paraphrases.
In the area of dialogue systems, a number of contributions
are concerned with the generation of variety in the utter-
ances of the dialogue system (e.g (Wen et al., 2015; Ko-
zlowski et al., 2003; Langkilde and Knight, 1998)). How-
ever, those efforts are mainly focused on word-level para-
phrases and little work has been dedicated to the generation
of contextual paraphrases. Pragst and Ultes (2018) have
made a first effort in this direction by proposing an ap-
proach for exchanging sentences, using a dialogue vector
model to assess whether two sentences can be used inter-
changeably. They find that the ability to identify contex-
tual paraphrases is of great importance to the overall per-
formance of the approach. However, the model used in that
work is highly specialised to the evaluation corpus and un-
likely to perform as well in different scenarios.
This work examines existing approaches to measuring sen-
tence similarity and determines how well they capture in-
formation relevant to contextual paraphrasing tasks in a
more general setting. To this end, we evaluate four mod-
els: sentence similarity based on semantic nets and corpus
statistics (Li et al., 2006), BERT (Devlin et al., 2018), skip-
thought vectors (Kiros et al., 2015) and InferSent (Conneau

et al., 2017). We test their performance regarding para-
phrase classification, dialogue act clustering and sentence
swapping, and provide an in depth discussion of the impli-
cations of our findings.
In the following, we first discuss related work in Section
2. Section 3 gives an overview of the chosen sentence em-
bedding models, followed by a description of our evalua-
tion approaches and discussion of our findings in Section 4.
Finally, we summarise our contribution and outline future
work.

2. Related Work
The evaluation of sentence embeddings is often performed
at the time of their introduction with regard to the current
state-of-the-art. With this approach, a comparison of dif-
ferent models cannot be found in a single work but must
be gathered from numerous individual contributions. Fur-
thermore, the same procedure is not necessarily used across
evaluations, further impeding a thorough understanding of
advantages and disadvantages of any given model. There
have been some efforts to address this issue, e.g. (White et
al., 2015). Here, the authors evaluate sentence embeddings
with a semantic classification task in a generalised manner.
Additionally, the RepEval 2017 Shared Task (Nangia et al.,
2017) compares the performance of seven sentence embed-
ding approaches (Chen et al., 2017; Nie and Bansal, 2017;
Balazs et al., 2017; Vu et al., 2017; Yang et al., 2017) on
a shared task. Those works operate on a strict definition of
sentence paraphrases: each sentence must entail the other to
be considered a paraphrase. The first task of SemEval-2014
(Marelli et al., 2014) expands on this definition by adding a
semantic relatedness score to sentence pairs. The task was
solved by 21 participating teams, with 17 submission for
the semantic relatedness subtask and 18 for the entailment
subtask. However, only 14 of those entries were accom-
panied by papers (Alves et al., 2014; Beltagy et al., 2014;
Bestgen, 2014; Biçici and Way, 2014; Bjerva et al., 2014;
Ferrone and Zanzotto, 2014; Gupta et al., 2014; Jimenez et
al., 2014; Lai and Hockenmaier, 2014; León et al., 2014;
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Lien and Kouylekov, 2014; Proisl et al., 2014; Vo et al.,
2014; Zhao et al., 2014).
Often, evaluations of the semantic meaning of sentence em-
beddings are carried out as classification task on paraphrase
corpora such as the MSR paraphrase corpus (Dolan et al.,
2004). Another, similar option is the natural language en-
tailment task where, instead of labelling sentence pairs as
either paraphrases or unrelated, they are labelled as either
entailment, neutral or contradiction. Such corpora include
the Stanford Natural Language Inference corpus (Bowman
et al., 2015) and the Multi-Genre NLI corpus (Williams et
al., 2018), which has been used in the RepEval 2017 Shared
Task. The SICK corpus (Marelli et al., 2014) developed for
SemEval-2014 Task 1 expands entailment annotations by
more fine-grained, human-annotated semantic relatedness
scores. In our work, we include a greater number of sen-
tence pairs in our understanding of paraphrases: two sen-
tences are considered contextual paraphrases if they can
fulfil the same function in the context of a conversation.

3. Sentence Similarity Models
Several approaches to sentence encoding exist, however,
not all of them are equally promising to perform well
on contextual paraphrasing tasks. Many focus mainly on
word-level features such as lexical similarity or word order
(e.g. (Sutskever et al., 2014; Palangi et al., 2016; Tsunoo
et al., 2017; Shen et al., 2014; Kalchbrenner et al., 2014;
Hu et al., 2014; Socher et al., 2011)). The identification
of contextual paraphrases is likely to be dependent mainly
on the ability of a model to capture functional similarity.
Therefore, we choose the following four approaches for our
comparative study: a similarity measure based on semantic
nets and corpus statistics (Li et al., 2006), BERT (Devlin
et al., 2018), skip-thought vectors (Kiros et al., 2015) and
InferSent (Conneau et al., 2017). Those models do not rely
solely on word similarities for their encoding, but take con-
text into account. In the following, a short overview of the
chosen approaches as well as a discussion of their charac-
teristics is given.

3.1. Sentence Similarity based on Semantic Nets
and Corpus Statistics

The work of Li et al. (2006) introduces a sentence similar-
ity measure that is based on semantic nets and corpus statis-
tics (SNCS). This approach generates sentence embeddings
based on a comparison of the words and their relative po-
sitions in two sentences and uses those embeddings to esti-
mate a sentence similarity.
SNCS generates two sentence embeddings: a semantic vec-
tor that captures similarities between the words of the two
embedded sentences, and a word order vector that repre-
sents similarities in the word order. Each word found in ei-
ther of the embedded sentences has a corresponding entry
in the embedding vectors. For the semantic embedding, the
value of an entry represents how similar the corresponding
word is to other words in the sentence: if the word is part
of the embedded sentence the entry is set to 1. Otherwise,
a similarity score between the word and each word of the
embedded sentence is determined based on their distance
in a Semantic Net (such as WordNet (Miller, 1995)). The

entry is then set to the maximal similarity score. For the
word order embedding, the corresponding entry of a word
contains the position in the embedded sentence of either the
word itself or the most similar word.
The generated sentence embeddings strongly rely on the
comparison of the two embedded sentences. They are only
valid for a specific sentence pair and change if one of the
sentences is replaced. Therefore, this method is not suitable
to create general sentence representations, e.g. as input in
machine learning models. However, the sentence similarity
score that is based on those vectors can be utilised for the
decision whether two sentences are contextual paraphrases.
It is derived from the cosine distance between the semantic
sentence vectors as well as the normalised difference of the
word order vectors.
More details regarding the implementation of this sentence
similarity measure can be found in the work by Li et al.
(2006). We introduce a minor adjustment in our implemen-
tation of this approach: the sentence similarity score can be
derived from either the cosine distance between semantic
sentence vectors, as proposed originally, or the euclidean
distance between the two vectors.

3.2. BERT

BERT (Devlin et al., 2018) stands for Bidirectional Encoder
Representations from Transformers and is trained on the
BookCorpus (Zhu et al., 2015) and the textual parts of the
English Wikipedia. The training incorporates both word-
level information by predicting a word in a sentence and
sentence-level information by predicting the following sen-
tence.
BERT utilises a bidirectional Transformer encoder as de-
scribed by Vaswani et al. (2017). In addition to the com-
monly used word embeddings, the input to the encoder in-
corporates the current position in the sentence as well as a
sentence affiliation that signifies which sentence the current
word belongs to in case the text to be encoded consists of
more than one sentence. The sentence encoder is trained
on two tasks: predicting a masked word in a sentence as
well as predicting the following sentence. The prediction
of a masked word is performed using a probability distri-
bution over a fixed vocabulary. The prediction of the con-
secutive sentence is implemented as binary decision task.
The ground truth for this is generated from the corpora by
choosing a sentence and either its subsequent sentence or a
random sentence.
BERT is intended to be pre-trained in the described manner
and then fine-tuned to a specific task. However, as our goal
is not to solve a specific task, but rather to determine the
informational content of a model, we employ the feature-
based approach without fine-tuning presented in the origi-
nal work. While the results are better when fine-tuning is
used, the reported results without it are still promising.
The work of Devlin et al. (2018) describes this approach in
more detail. A pre-trained model1 released by the authors
is used in our study.

1https://github.com/google-research/bert
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3.3. Skip-thought Vectors
Skip-thought vectors (Kiros et al., 2015) (STV) are based
on the idea that sentences with similar meaning will be
used in similar contexts. Therefore, a sentence encod-
ing is learned by predicting surrounding sentences with an
encoder-decoder model. The training data consist of con-
tinuous text from the BookCorpus dataset (Zhu et al., 2015)
that easily allows for the target data to be determined and
does not need additional annotation.
The encoder part of the skip-thought model consists of an
embedding layer, followed by a GRU (Chung et al., 2014)
layer. The words in a sentence are fed sequentially into this
model to produce the sentence embedding. The final output
of the encoder is used as initial state for the decoder GRU
layers during training. Two such layers exist, one for the
preceding and one for the subsequent sentence. The input
of those layer consists of the sequentially presented em-
bedded words in those sentences, the output is a probability
distribution over a fixed vocabulary indicating which word
will be next in the target sentence.
A more detailed description of STV can be found in the
work of Kiros et al. (2015). The authors furthermore pro-
vide a pre-trained model for download2 that we use in our
study.

3.4. InferSent
InferSent (InfS) is a supervised approach to learning mean-
ingful sentence encodings taking advantage of natural lan-
guage inference. It utilises the annotations of the Stanford
Natural Language Inference (SNLI) corpus (Bowman et al.,
2015): 570,000 sentence pairs are manually labelled as ei-
ther entailment, contradiction or neutral.
The training process encompasses a sentence encoder as
well as a classifier. The first step generates sentence em-
beddings for both sentences in a training pair. Different
encoder architectures have been implemented, however,
the best results are obtained using a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with max pooling:
The embedded words in a sentence are fed sequentially to
the biLSTM which generates an output after each time step.
The outputs of all time steps are pooled by choosing the
maximum value in each dimension. The sentence embed-
dings, as well as their element-wise product and absolute
element-wise difference are then fed into a 3-class classi-
fier. The labels provided in the SNLI corpus serve as target
value for this classifier.
The approach is described in more detail in the work of
Conneau et al. (2017). We employ the pre-trained sentence
encoder3 provided by the authors.

3.5. Comparison of the Approaches
The description of our chosen approaches show that some
characteristics are shared while others differ. We discuss
the most important differences in this section.
All four considered approaches offer sentence embeddings
that can be used as an estimate of how similar two sen-
tences are. However, the embeddings that SNCS provides

2https://github.com/ryankiros/skip-thoughts
3https://github.com/facebookresearch/InferSent

differ from the other ones significantly in that no generally
valid embedding is generated for a single sentence. Instead,
the embeddings are dynamically derived from the compar-
ison of two sentences to each other and are only valid in
that context. While this excludes them from a number of
applications such using them as input to a neural network,
it does not interfere with the determination of contextual
paraphrases based on the distance between embeddings.
Another aspect that sets SNCS apart from the other ap-
proaches is that it is not based on machine learning tech-
niques and therefore does not require training. This distinc-
tion impacts several areas of interest: the ability to tailor the
embeddings to a specific task, the time needed for training
and during deployment and the data needed for each ap-
proach.
If pre-trained sentence encoders do not perform in a satis-
factory manner, the approaches based on machine learning
offer the flexibility to train an encoder on new datasets that
may be better suited to the task to try and achieve better
results. SNCS can not be improved in that manner.
While neither SNCS nor the machine learning based ap-
proaches need time for training if pre-trained encoders are
used, the aforementioned flexibility to train a new encoder
comes at the cost of additional time needed to perform this
training. However, during deployment the machine learn-
ing based approaches can embed sentences much faster
than SNCS, as they merely perform a number of mathe-
matical operations while SNCS needs to search for words
in a Semantic Net repeatedly for each sentence pair indi-
vidually.
Pre-trained encoders of the machine learning based ap-
proaches are the most desirable option with regards to the
required data, as they do not need any additional data. In
order to train a new encoder, both BERT and STV only
require a large amount of continuous text. InfS however
needs annotated data and is therefore the most difficult op-
tion if a specialised encoder is desired. During deployment,
none of the machine learning based approaches needs addi-
tional data. However, a semantic net needs to be available
for SNCS.
The most consequential characteristic of the considered
approaches for contextual paraphrasing tasks is the way
in which context is captured within the sentence embed-
dings. Each approach does this in a unique manner: SNCS
relies on the information about words and their connec-
tions present in a semantic net. Both BERT and STV take
the surrounding sentences into account when training their
encoder: BERT embeddings are trained on the decision
whether a sentence could follow another one, STV are used
to generate both the preceding and the following sentence.
InfS encodes the knowledge of human annotators regarding
natural language inference.

4. Contextual Paraphrasing Tasks
Our comparative study is performed with three contextual
paraphrasing tasks: paraphrase classification, dialogue act
clustering and sentence swapping. We consider the model
that yields the best performance consistently across vary-
ing test conditions to be the one currently best suited for
contextual paraphrasing tasks. Therefore, we perform our
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Figure 1: Architecture of the Feedforward Neural Network
used to classify paraphrases.

evaluation using not only several tasks, but also several cor-
pora, classifier and distance metrics to ensure a stable per-
formance under varying conditions. As we are more in-
terested in the degree to which the different models cap-
ture the context and information relevant for solving gen-
eral contextual paraphrasing tasks than in optimally solving
the presented tasks, we employ simple distance metrics be-
tween sentence embeddings as input to our evaluations and
abstain from additional and more elaborate inputs such as
additional context that might improve the overall results. In
the following, this evaluation and our findings are described
in more detail.

4.1. Contextual Paraphrase Classification
This section is concerned with the task of paraphrase clas-
sification. In the first part, we describe our approach to the
evaluation of this task, while the second part presents our
findings.

4.1.1. Task Description
The goal of paraphrase classification is to identify two sen-
tences as either paraphrases or unrelated. The ground truth
is usually given by a corpus of sentences pairs with corre-
sponding labels.
We perform the evaluation of the paraphrase classification
task in two steps: first, a traditional paraphrase classifi-
cation task is performed on the MSR paraphrase corpus
(Dolan et al., 2004). This corpus contains 5,800 sentences
pairs from news sources on the web, human-annotated as
either paraphrases or unrelated. The results of this first part
serve as comparison for the results obtained in the second
part, the contextual paraphrase classification task. Here, we
utilise the Opusparcus (Creutz, 2018) corpus.
Opusparcus is a paraphrase corpus for six languages, in-
cluding English. The sentence pairs are extracted from the
Opensubtitles2016 corpus (Lison and Tiedemann, 2016), a
corpus of movie and TV subtitles. Opusparcus consists of
manually annotated development and test sets, as well as
a larger automatically ranked training set. The annotations
consist of four categories that rate the degree to which two
sentences are paraphrases, ‘good’, ‘mostly good’, ‘mostly
bad’ and ‘bad’. As opposed to a binary classification, this
annotation allows for sentences that are contextual para-
phrases to be rated accordingly. Most contextual para-
phrases can be found in the category ‘mostly good’, for ex-
ample the pairs ‘No different.’/‘That ’s the same thing.’ or
‘I think I got it.’/‘I’m good.’. We employ the joint English
development and test sets in our study, resulting in 3,088
annotated sentence pairs overall and 1138 sentence pairs in
the ‘mostly good’ category specifically.
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Figure 2: Mean and standard deviation of the UAR
achieved for the MSR paraphrase corpus.

Approach Accuracy F-Score

Vector Based Similarity 0.65 0.75
TF-KLD 0.80 0.86

SNCS 0.69 0.81
BERT 0.67 0.80
STV 0.67 0.80
InfS 0.71 0.81

Table 1: Accuracy and F-score for the MSR paraphrase cor-
pus.

Three types of classifiers are considered: Logistic Regres-
sion (LR), a Feedforward Neural Network (NN) and a Sup-
port Vector Machine (SVM). The architecture of the NN is
depicted in Figure 1. It is a simple Multilayer Perceptron
with 10 nodes in the hidden layer and a softmax activation
function as output. The classifiers are trained and evaluated
using ten-fold cross-validation. Their input is composed of
either the euclidean or cosine distance between two sen-
tence embeddings.
We utilise the Unweighted Average Recall (UAR) as per-
formance metric, defined as

UAR =
1

N

∑
c∈C

TPc

TPc + FNc
,

where C is the set of all classes, N the number of classes,
TPc the number of true positives found for class c and FNc

the number of false negatives detected for class c. This met-
ric is regarded as balanced even if the classes are of differ-
ent sizes. Its resulting values range from 0 to 1, where 1
represents a perfect performance.

4.1.2. Results of the Study
The traditional paraphrasing task using the MSR para-
phrase corpus is best solved by InfS with an UAR of 0.59.
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Figure 3: Mean and standard deviation of the UAR
achieved for Opusparcus.

With an UAR of 0.57, the SNCS model shows a simi-
lar performance that is not significantly different. BERT
and STV, however, yield significantly worse results (BERT:
t(59.39) = −13.27, p < .001; STV: t(59.02) = −13.36,
p < .001), as can be seen in Figure 2. With an UAR of
0.5, both do not perform better than the majority class pre-
diction for a binary classification. Presumably, BERT lacks
fine-tuning, while STV puts too little focus on the word
level to perform well on this task.
We decided to use the UAR for our evaluation as it
is robust with regard to unbalanced class sizes. How-
ever, many previous works have used Accuracy and
F-score as performance metrics. To put our re-
sults in context, we provide those values for our cho-
sen approaches in Table 1, as well as the worst and
best approaches for Paraphrase Identification accord-
ing to https://aclweb.org/aclwiki/State of the art (as of
28.02.2020): Vector Based Similarity (Mihalcea et al.,
2006) and TF-KLD(Ji and Eisenstein, 2013). Our chosen
approaches show moderate success for this task compared
to others available.
The evaluation of the contextual paraphrase task results in
a different ranking. As Figure 3 shows, the best result is
again achieved by InfS. With an average UAR of 0.42, it
performs significantly better than the next best model, STV,
achieving an UAR of 0.36 (t(108.24) = 6.36, p < .001).
While InfS can maintain its status, SNCS does not seem
to be as well suited for this task, performing significantly
worse than STV with an UAR of 0.29 (t(105.40) = 7.36,
p < .001).
A majority class predictor would achieve an UAR of 0.25
for this classification, which both BERT and SNCS barely
exceed. However, STV and to an even greater degree InfS
surpass this baseline by a rather large margin. Even though
there is room for improvement, this provides a solid foun-
dation for further research.
Another interesting finding is that while classifier and
distance metric change the maximum UAR that can be
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Figure 4: Comparison of sentence similarity models over-
all, by distance metric and by classifier for Opusparcus.
Similar performance trends can be observed across differ-
ent conditions.

achieved, they barely impact the ranking of the different
models. The general trend is preserved as can be seen in
Figure 4.

4.2. Dialogue Act Clustering
In the following, the second part of the comparative study
is presented, namely the task of dialogue act clustering. We
describe the setup of the study, before assessing our find-
ings.

4.2.1. Task Description
Dialogue act clustering determines how well sentences that
share a dialogue act are grouped by the sentences encoding.
To this end, the clusters given by dialogue act annotations
are compared to those found by a clustering algorithm using
the distance between two sentence embeddings.
We evaluate this task using the SPAADIA Corpus (Leech
and Weisser, 2013) and the Switchboard Dialogue Act Cor-
pus (Jurafsky et al., 1997; Shriberg et al., 1998; Stolcke
et al., 2000). Both are dialogue corpora of human-human
interaction manually annotated with dialogue acts. The
SPAADIA corpus consists of task-oriented dialogues such
as train travel booking, whereas the Switchboard corpus
contains casual conversations.
The clustering is performed using the k-Means algorithm.
As this algorithm is generally implemented to use euclidean
distance, we do not consider the cosine distance for this
task.
As performance metric, we choose the Adjusted Rand In-
dex (ARI), a variation of the Rand Index corrected for
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Figure 5: The mean ARI achieved for the clustering of the
SPAADIA corpus.

chance. As the UAR for classification, this metric for
cluster-similarity is robust for unbalanced cluster sizes. It
is defined as follows:

ARI =
RI − E(RI)

max(RI)− E(RI)
.

The equation encompasses the Rand Index RI , the ex-
pected Rand Index E(RI) and the maximal Rand Index
max(RI):

RI =
TP + TN

TP + FP + TN + FN
,

E(RI) =
(TP + FN)(TP + TN)

TP + FP + TN + FN
,

max(RI) =
(TP + FN) + (TP + TN)

2
.

Here, TP is the number of sentence pairs that share a clus-
ter and a dialogue act, TN the number that share neither a
cluster nor a dialogue act, FP the number that share a clus-
ter but not a dialogue act, and FN the number that share
a dialogue act but not a cluster. The ARI yields values be-
tween −1 and 1, where 1 is the perfect score.
Over the course of our evaluation, it became apparent that
the SNCS model is too time-consuming to allow for a full
clustering. As each sentence pair generates a unique en-
coding, common optimisations that allow for faster com-
putations cannot be employed. Therefore, we exclude this
model from our study of the dialogue act clustering task.
However, to get an idea of the performance of this model,
we add a dialogue act classification task. We generate a
ground truth by randomly choosing sentence pairs from
the SPAADIA and Switchboard corpus respectively, and
annotate whether they share a dialogue act. The gener-
ated SPAADIA classification corpus contains 5,464 sen-
tence pairs, the Switchboard classification corpus 6,001.
We employ the setup of the paraphrase classification task
for this part of the evaluation.

4.2.2. Results of the Study
The clustering of the SPAADIA corpus is best solved by
STV and InfS with a mean ARI of 0.15. While STV
achieves a slightly higher ARI, the difference is not sig-
nificant. BERT however performs significantly worse than
InfS (t(18) = 14.82, p < .001), as seen in Figure 5. The
achieved ARIs are better than the random baseline of 0 but
show considerable room for improvement.
The classification part does not completely replicate the
ranking: STV performs best with an average UAR of
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Figure 6: Mean and standard deviation of the UAR
achieved for the SPAADIA corpus.
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Figure 7: Comparison of sentence similarity models over-
all, by distance metric and by classifier for the SPAADIA
corpus. Similar performance trends can be observed across
different conditions.

0.65, significantly outperforming InfS at 0.58 (t(93.54) =
−5.58, p < .001). Both beat the baseline of a major-
ity class prediction by a substantial margin, while SNCS
and BERT perform about as well as predicting the majority
class would. Figure 6 shows the details of the results.
Again, the general trend of the performance of different
models persists across classifiers and distance metrics, as
seen in Figure 7.
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Figure 8: The mean ARI achieved for the clustering of the
Switchboard corpus.
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Figure 9: Mean and standard deviation of the UAR
achieved for the Switchboard corpus.

Figure 8 shows the mean ARI achieved at the clustering
task for Switchboard. Here, STV, with a mean ARI of 0.06,
significantly outperforms the next best model InfS with an
ARI of 0.05 (t(9.45) = 13.19, p < .001). This task appears
to be more difficult than previous ones: The models barely
outperform the random baseline of 0.
The classification does not reproduce the clustering results.
As Figure 9 shows, the best result is achieved by InfS with
an UAR 0.62, which is significantly better than BERT at
0.56 (t(102.55) = 6.25, p < .001). This constitutes a
substantial improvement from the majority class prediction
of 0.5.
Again, the performance trends share similarities across
classifiers and distance metrics, as shown in Figure 10.

4.3. Sentence Swapping
In this section, we describe the sentence swapping task and
discuss the performance of the different sentence similarity
models in this task.

4.3.1. Task Description
The sentence swapping task explores to what degree the
chosen sentence similarity models are able to identify sen-
tences that can fulfil the same functionality. The goal is
to find an equivalent replacement for the second part of a
sentence pair. For example, the second sentence of the sen-
tence pair ‘Do you want to join me for lunch? – I don’t have
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Figure 10: Comparison of sentence similarity models over-
all, by distance metric and by classifier for the Switchboard
corpus. Similar performance trends can be observed across
different conditions.

time today.’ could be replaced by the functionally equiva-
lent ‘I ate a lot already.’. A valid replacement such as this
one has to be chosen from a list of available sentences to
successfully complete the sentence swapping task.
In this part of the evaluation, we replicate the assessment
of a dialogue vector model presented by Pragst and Ultes
(2018) and adopt it to sentence embeddings that are more
generally applicable. The ground truth is given by the au-
tomatically generated corpus introduced in that work. This
corpus provides sentence pairs in the form of dialogue acts
and corresponding verbalisations, e.g. sa inviteLunch –
ua declineInvitation verbalised as ‘Do you want to join me
for lunch? – I don’t have time today.’. The dialogue acts
are extremely fine-grained and describe specific functions
such as inviting someone for lunch or declining an invita-
tion. Additionally, the corpus encompasses, for each ver-
balised sentence, a set of dialogue acts that the sentence
can realise. The sentence ‘I ate a lot already.’ can either
decline an invitation for lunch as in our previous example
or order a small pizza if the first half of the sentence pair
was sa askSize, verbalised as ‘What size do you want for
your pizza?’. This is reflected in its list of dialogue actions:
ua declineInvitation and ua sizeSmall. This list is used to
determine whether two sentences can fulfil the same func-
tion in a sentence pair: The utterance ‘I don’t have time
today.’ shares the dialogue action ua declineInvitation and
is therefore a valid exchange candidate in our example sen-
tence pair.
Our evaluation is performed on a randomly chosen set of
sentence pairs from the aforementioned dialogue corpus.
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Figure 11: The mean accuracy achieved for the sentence
swapping task.

For each sentence pair, the sentence similarity models are
used to estimate the similarity score between the second
sentence of the pair and all available replacement sentences.
The most similar sentence is then chosen for the exchange.
The dialogue action corresponding to the second sentence
of the pair represents the target dialogue action. The list
of dialogue actions that is associated with the replacement
sentence has to contain this dialogue action in order for the
exchange to be considered successful. The performance
metric is accuracy: the percentage of correctly constructed
sentence pairs.

4.3.2. Results of the Study
The sentence swapping task is best solved by the InfS
model. It achieves a mean accuracy of 0.19 and performs
significantly better (t(26.34) = 2.21, p < .05) than SNCS
at 0.09.
The chosen distance metric is of significant importance to
this task (F (1, 72) = 11871.64, p < .001). The cosine
distance performs very poorly across all conditions, as can
be seen in Figure 11. The best accuracy of 0.38 is achieved
by InfS using the euclidean distance.
While Pragst and Ultes (2018) report 0.7 as single best
achieved accuracy, their dialogue vector model is highly
adapted to the evaluation corpus and unsuitable for other
domains. Considering the amount of sentences to choose
from, an accuracy of 0.38 can be considered a solid perfor-
mance for a more generally applicable model such as InfS.
Still, further improvements are desirable.

4.4. Discussion
In our evaluations, InferSent is consistently among the best
performing models. Not only does it achieve good results
for the traditional paraphrase classification task on the MSR
paraphrase corpus, it is also one of the best models for para-
phrase classification on Opusparcus, dialogue act clustering
and sentence swapping. Additionally, the chosen classi-
fier and distance metric do not change the ranking of In-
ferSent for most of the tasks. Therefore, it can be consid-
ered the best currently available model to solve contextual
paraphrasing tasks.
Another interesting finding is that differences between tra-
ditional paraphrasing tasks and contextual paraphrasing
tasks can be observed: while the sentence similarity based
on semantic nets and corpus statistics performs well on the
traditional paraphrasing task, skip-thought vectors gain an
advantage on contextual paraphrasing tasks. This is most
likely due to the semantic net and corpus statistics based

similarity measure having a stronger focus on word mean-
ing, while skip-thought vectors are trained taking the con-
text of a sentence into account. BERT is often among the
worst performing models. It is likely that the pre-training
does not contain enough relevant information to success-
fully solve the presented tasks and fine-tuning to a specific
task is integral to a better performance for this model.
Overall, most of the contextual paraphrasing tasks could
be solved with some success over a majority class predic-
tion. The results are comparable to those achieved for tradi-
tional paraphrasing tasks. Therefore, existing models pro-
vide a solid foundation for research involving contextual
paraphrases. However, additional work needs to be done
to improve the current results and further advance the han-
dling of contextual paraphrases.

5. Conclusion and Future Directions
Traditionally, work on paraphrasing focuses on word-
level paraphrases, not taking into account contextual para-
phrases: phrases with a common meaning given a specific
context. In this work, we assess the ability of four exist-
ing approaches to sentence embeddings to rate contextual
paraphrases: semantic similarity based on semantic nets
and corpus statistics, BERT, skip-thought vectors and In-
ferSent. We assess their performance regarding contextual
paraphrase classification, dialogue act clustering and sen-
tence swapping, and find that InferSent achieves a good
performance most consistently.
Future work includes further improvement on sentence em-
bedding models for contextual paraphrases, e.g. by ad-
vancing or combining the presented models, by finding
even more suitable existing models or by creating new ap-
proaches for this task. Furthermore, contextual paraphrase
generation using those models is a promising field of re-
search that could allow for more variety in the output of
dialogue systems.
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