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Abstract
Multiword expression (MWE) identification in tweets is a complex task due to the complex linguistic nature of MWEs combined
with the non-standard language use in social networks. MWE features were shown to be helpful for hate speech detection (HSD).
In this article, we present joint experiments on these two related tasks on English Twitter data: first we focus on the MWE
identification task, and then we observe the influence of MWE-based features on the HSD task. For MWE identification, we
compare the performance of two systems: lexicon-based and deep neural networks-based (DNN). We experimentally evaluate
seven configurations of a state-of-the-art DNN system based on recurrent networks using pre-trained contextual embeddings
from BERT. The DNN-based system outperforms the lexicon-based one thanks to its superior generalisation power, yielding
much better recall. For the HSD task, we propose a new DNN architecture for incorporating MWE features. We confirm that
MWE features are helpful for the HSD task. Moreover, the proposed DNN architecture beats previous MWE-based HSD
systems by 0.4 to 1.1 F-measure points on average on four Twitter HSD corpora.
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1. Introduction
A multiword expression (MWE) is a lexicalised com-
bination of two or more lexemes which exhibits some
form of idiomaticity (Baldwin and Kim, 2010). Auto-
matic identification of MWEs is a difficult task in natural
language processing because, among others, MWEs can
have discontinuities and overlaps (Constant et al., 2017).
Moreover, only a few corpora annotated in terms of
MWEs are available.
In this article, we study the robustness of MWE identi-
fication systems on non-standard texts, namely tweets.
Indeed, tweets often employ non-standard syntax and
contain spelling mistakes, abbreviations, etc. We hy-
pothesise that, under these conditions, the MWE identi-
fication task becomes even more difficult.
Hate speech is commonly defined as a communication
that disparages a person or a group based on some char-
acteristic such as race, colour, gender, etc. (Nockeby,
2000). Manual moderation of harmful tweets is not
possible due to the huge number of tweets posted every
day. Thus, automatic methods to support social media
moderation can potentially help fight online harassment,
cancellation, polarisation, misinformation, etc.
In this work, we are interested in studying the impact
of different MWE identification systems for automatic
hate speech detection (HSD). Previously, Stanković et
al. (2020) and Zampieri et al. (2021) have shown that
MWEs are helpful for this task. We compare two auto-
matic MWE identification systems: the first one utilises
a look-up method on a lexicon, the second one is based
on a deep neural network (DNN). The identified MWEs
are employed as additional features in a newly proposed
DNN architecture for HSD.

We structure the article as follows. Related work in the
field of MWE identification and HSD is presented in
Section 2. Our study on MWE identification on tweets is
described in Section 3. Section 4 highlights the impact
of MWE features on HSD. Finally, we conclude and
propose directions for future work.

2. Related Work
MWE identification is defined as automatically anno-
tating MWE occurrences in a corpus (similar to named
entity recognition). MWE identification should be dis-
tinguished from MWE discovery, which consists in ex-
tracting a list of MWEs from corpus (Constant et al.,
2017). MWE discovery is not covered in this paper.
The MWE identification task has been addressed in
the past with statistical sequence tagging models, e.g.,
conditional random fields – CRFs (Constant et al.,
2012) and structured perceptron (Schneider et al., 2014).
Parsing-based models have also been employed, such as
tree-substitution grammars (Green et al., 2013) and de-
pendency transition-based parsing (Constant and Nivre,
2016). MWE identification has also been accomplished
using dictionaries and rule-based systems such as the
mwetookit (Cordeiro et al., 2016).
The systems submitted to recent shared tasks led to ad-
vances in the state of the art (Schneider et al., 2016;
Savary et al., 2017; Ramisch et al., 2018; Ramisch et
al., 2020). The best system in the PARSEME shared
task 2017, named Transition, was adapted from Con-
stant and Nivre (2016) using a transition-based parsing
system. In 2018, the best system TRAVERSAL was
a tree CRF (Waszczuk, 2018), although some neural
models performed quite well, e.g., TRAPACC (Stodden
et al., 2018). The 2020 edition benefited from advances
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in pre-trained language models, as exemplified by the
best system, MTLB-struct, based on a BERT model
fine-tuned using a multi-task parsing and MWE identifi-
cation objective (Taslimipoor et al., 2020).
The lexical-semantic recognition system of Liu et al.
(2021) is a recent BERT-based system which predicts
MWEs and supersense tags using a single supertag sys-
tem. It consists of a recurrent neural network that takes
as input frozen contextual embeddings from BERT. The
system obtained impressive results on the Streusle cor-
pus (Schneider and Smith, 2015) and was also evalu-
ated cross-domain on the PARSEME English corpus
(Ramisch et al., 2018) and on DimSum (Schneider et al.,
2016). We utilise this system in our experiments given
that it is recent, simple, well documented and freely
available.
Some papers have analysed the performance of MWE
identification. Maldonado and QasemiZadeh (2018)
showed that MWE identification performance is closely
related to the rate of unseen MWEs in the test set. Savary
et al. (2019) argue that lexicons are needed to obtain
better generalisation of MWE identification, where gen-
eralisation is harder than in similar tasks such as named
entity recognition. The evaluation of MWE identifica-
tion in downstream tasks is quite rare, and we discuss it
specifically for HSD below.
Hate speech detection is a challenging task in the
field of natural language processing. Early approaches
were based on features with classifiers such as support
vector machines and logistic regression. Waseem and
Hovy (2016) employed character-level features with
logistic regression to classify tweets. Davidson et al.
(2017) classified tweets using word-level features, part-
of-speech, sentiment and meta-data of tweets with a
logistic regression classifier. Other hard-coded features
have been used for hate speech detection, such as user
features (Fehn Unsvåg and Gambäck, 2018). A survey
that summarises the state-of-the-art features has been
done by Schmidt and Wiegand (2017).
Recently, most HSD systems are based on DNNs with
word embeddings. Badjatiya et al. (2017) showed
that DNN approaches outperform state-of-the-art char-
acter/word n-gram approaches. Gambäck and Sikdar
(2017) proposed a convolutional neural network system
that outperforms a logistic regression classifier. Zhang
et al. (2018) proposed a DNN architecture based on
convolutional and recurrent neural networks. Cao and
Lee (2020) proposed the HateGAN system, which uses
an adversarial method based on reinforcement learning
and shows important improvements on HSD. Awal et
al. (2021) developed the AngryBERT system, which
was trained for hate speech detection and sentiment
classification.
Multiword expressions and hate speech detection
have been the focus of a couple of recent studies.
Stanković et al. (2020) extended a Serbian lexicon of
abusive language with special attention to MWEs and
proposed to exploit it to create an abusive-language cor-

pus for the Serbian language. Zampieri et al. (2021)
developed a DNN-based system that uses MWE features.
The MWE features were integrated in a DNN-based sys-
tem that utilises the categories of MWEs. These two
works have shown that MWEs are helpful for HSD.

3. MWE Identification in Tweets
In this section, we explain our methodology for MWE
identification in tweets, and present its experimental
evaluation results.

3.1. Methodology
The goal of the automatic MWE identification task is
to tag the words that belong to MWEs. We analyze
the robustness of two MWE identification systems for
tweets: a lexicon-based approach based on the mwe-
toolkit (Cordeiro et al., 2016), and a lexical recognition
system (LSR) based on a DNN (Liu et al., 2021).
For the lexicon-based approach, we extract a list of
MWEs from several annotated corpora. Each word
of the extracted MWE is lemmatised and the canoni-
cal forms of extracted MWEs are put in the lexicon of
MWEs. The lexicon contains both MWEs that appear in
contiguous configurations (e.g., I returned to pick up my
car) and non-contiguous configurations (e.g., I picked it
up when it was finished) in the annotated corpora. For
the latter, only the words composing the MWE are kept,
ignoring intervening words (e.g., both instances above
will yield a single entry pick up in the lexicon).1 The
lexicon is then projected on the test corpus to annotate
the MWEs, as detailed in Section 3.2.
The LSR system is based on DNNs and should have
a higher capability of generalisation from the exam-
ples compared to the lexicon-based system. The LSR
architecture consists of a BERT model (Devlin et al.,
2019), followed by two bidirectional long short-term
memory (Bi-LSTM) layers and one CRF layer. We use
this system in our experiments given that it is recent and
obtained good results in cross-domain evaluations.
We are interested in studying different training configu-
rations of the LSR system: varying the amount and the
nature of the training set and using different “BIO” tag-
ging schemes (see Figure 1). The “BIObio” scheme is
similar to the original BIO tagging scheme with MWE
categories and supersenses proposed by Liu et al. (2021).
Each token is tagged “B” if it is at the beginning of a
MWE, “I” if it is inside a MWE, “O” if it does not
belong to a MWE. The labels “b”,“i” and “o” have
the same meaning as “B”, “I” and “O” labels, but the
tagged MWE is nested within an encompassing MWE.
In “BIObio”, lexical and MWE categories (e.g., VID
for verbal idioms, VPC for verb-particle constructions)
are concatenated with the initial tags “B” and “b”. To-
kens different from “I” and “i” are also concatenated to
lexical categories (e.g., noun, verb) and, if applicable,

1Lexicon entries are not reordered, e.g., take pictures and
pictures taken are extracted as two distinct lexicon entries.
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to supersenses. The “BIOo-cat” tagging scheme con-
catenates the lexical and MWE categories to the labels
“B” and “I”, but not to “O” labels. The “BIOo” tagging
scheme is even simpler and has no MWE categories.
Differently from Liu et al. (2021), these two schemes
(BIO-cat and BIOo) ignore supersenses.
The LSR system can predict a structurally invalid tag-
ging: e.g., a word tagged with the label “I” can appear
before a word tagged with a label “B” in a sentence. To
correct the invalid sequences of predictions of “BIO”
labels, we apply a filtering on the outputs of the LSR
system as detailed below.

3.2. Experimental Setup
In this section, we describe the corpora for the MWE
identification task and the configurations of our systems.

Corpora Sets #sent. #tokens #MWEs

Streusle
Train 2,724 44,822 2,425
Dev 554 5,394 283
Test 535 5,381 281

PARSEME Train 3,471 53,201 331
Test 3,965 71,002 501

Tweet part Train 987 18,247 1,112
of DimSum Test 500 6,627 362

Table 1: Number of sentences, tokens and strong MWE
occurrences in the standard partitions in training, de-
velopment, and test sets for Streusle, PARSEME and
DimSum corpora.

Table 1 shows the statistics of three English corpora.
Streusle is a corpus of online reviews (non-tweets) an-
notated in terms of weak (e.g., narrow escape, do not be
surprised) and strong (e.g., go out of my way, close call)
MWEs and supersenses (Schneider and Smith, 2015).
MWES in the corpus are annotated into 20 fine-grained
categories and divided into training, validation and test-
ing sets. We employ version 4.3 of the Streusle corpus.
The PARSEME corpus (Ramisch et al., 2018) does
not contain tweets and is annotated only in terms of
strong verbal MWEs. Six categories of verbal MWEs
are considered. The English PARSEME corpus is only
available in version 1.1 and is split in training and test
sets, with no development set.
The DimSum corpus (Schneider et al., 2016) contains
online web reviews, TED talk transcripts, and tweets.
In our work we use only the tweet part of this corpus
because we focus our experiments on tweets, as the
corpora used in HSD experiments contain only tweets
(Section 4). The corpus is annotated in terms of strong
MWEs using binary labels: a word either belongs to
a MWE or not. We exploit the test part of this corpus
as test set for assessing our MWE identification sys-
tems. All MWE identification system configurations
are evaluated on the tweets contained in the test part of
DimSum.
As PARSEME and DimSum corpora are annotated in
terms of strong MWEs, we take into account only strong

MWE annotations from the Streusle corpus. Weak
MWEs are not taken into account (except for the LSR1

configuration).
For all corpora except the DimSum test set, we “nor-
malise” MWEs: in a given sentence, when a word is
common to two MWEs (MWE overlap) or if two MWEs
are nested, we remove the second MWE.2 This phe-
nomenon is infrequent and occurs in less than 5% of
sentences, so this normalisation can be performed with-
out significantly impoverishing the training data.
For the lexicon-based configuration, we extract MWEs
from all the above corpora, except the DimSum test set:
Streusle train, dev and test, PARSEME train and test,
DimSum train. The obtained lexicon contains 3,255
MWEs. We utilise the DimSum training set to tune the
parameters of the lexicon-based system. We evaluated
the use of parts-of-speech with the lemmas of MWE
component words. Parts of speech do not show im-
provement in MWE identification on the development
set. Thus, we use lemmas only. We also experimented
several values to tune the maximal gap length between
words composing MWEs when they are discontinuous.
The optimal value of 3 is chosen in the following exper-
iments.
For the LSR model, we train seven configurations. We
recall that the proposed LSR configurations differ in the
training data and the granularity of tagging labels. We
train each configuration five times with different random
seeds for initialisation. We use early stopping with 10
epochs for patience.
LSR1 configuration corresponds to the system proposed
in Liu et al. (2021). In this configuration, we train the
LSR model on the Streusle training set and utilise the
default labelling scheme as in Liu et al. (2021), with
weak and strong MWE labels. It is a complex tagging
scheme, and counts around 600 labels.
LSR2 configuration is also trained on the Streusle train-
ing set. We adopt the“BIOo-cat” tagging scheme. Com-
pared to the LSR1 configuration, weak MWEs are ig-
nored, the supersense labels are omitted, as well as
lexical categories in non-MWE tags. The final number
of labels is 42.
LSR3 configuration is also trained on the Streusle train-
ing set. We utilise the “BIOo” tagging scheme and
predict only 4 labels. The goal of LSR1, LSR2 and
LSR3 configurations is to study the impact of different
labelling schemes on MWE identification.
LSR4 configuration is trained on the DimSum training
set. As the DimSum corpus has no fine-grained cat-
egories, we use the “BIOo” labelling scheme with 4
labels. This system uses only the limited in-domain data
available.
LSR5 configuration is trained on the concatenation of
the DimSum (tweets) and the Streusle (non-tweets) train-
ing sets. We utilise the “BIOo” tagging scheme with

2We remove the MWE whose first token appears later, or
the shortest one if they start at the same position.
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Figure 1: Example of BIO labelling for the LSR model. This example has two MWEs: had surgery and ingrown
toenail. The first token of each MWE is tagged ‘B’ (begin), the following MWE tokens are tagged ‘I’ (inside).
For BIOo-cat and BIObio, the categories are appended to the tags: lexical category (e.g., ‘V’ for verbal, ‘N’ for
nominal), and MWE category (e.g., ‘LVC-full’ for full light-verb constructions). In BIObio, supersenses (e.g.,
‘n.body’ for body parts) are added to the tags, and lexical categories are also appended to ‘O’ (outside) tags but not
to ‘I’ tags, as in Liu et al. (2021).

4 labels, as in LSR4. The goal of this system is to ver-
ify whether completing the in-domain data of DimSum
with out-of-domain data from Streusle helps.

LSR6 configuration is the union of predictions from two
sub-systems. The first one is trained on the PARSEME
and Streusle training sets and covers only verbal MWEs
and 14 labels. The second one is trained on the Streusle
training set to predict non-verbal MWEs (30 labels).
This configuration uses the “BIOo-cat” tagging scheme
for both sub-systems. If the final prediction, resulting
from the union of the predictions of both sub-systems,
has an MWE overlap, we choose to keep the MWE
whose first token appears first. The idea here is to make
use of the maximum of out-of-domain data available:
Streusle for all MWEs, plus the extra annotations for
verbal MWEs from PARSEME.

LSR7 configuration is the same configuration as LSR6

except for the label set. In this configuration, we adopt
“BIOo” tagging scheme and 4 labels.

Other configurations are not possible to train because
some corpora do not have category and supersense an-
notations. For each of the LSR configurations described
above, we employ the Streusle development set to tune
the filtering parameters. We evaluated different heuris-
tics to filter the LSR outputs and adopted the following
ones: we remove single-token MWEs, “I” labels not
preceded by a “B” label, and MWEs containing special
tokens (@USER, URL, and hashtags). The MWE maxi-
mum gap length was also tuned and set to 2, removing
all MWEs containing gaps greater than 2.

Evaluation metrics. To evaluate the MWE identifica-
tion systems, we adopt standard metrics which were
applied for the PARSEME (Savary et al., 2017) and
DimSum (Schneider et al., 2016) shared tasks. The
MWE-based measure is the F1-score for fully predicted
MWEs. The token-based measure is the F1-score for
tokens belonging to a MWE, assessing partial matches.
The MWE-link-based measure is the F1-score based on
matching adjacent word pairs within MWEs, and gives
credit to partly correct MWEs without accounting for
single-token predictions.

3.3. Results
In this part, we present results obtained for the MWE
identification task on tweets part of the DimSum test set.
Table 2 shows that the lexicon-based system achieves
28.7% MWE-based F1-score. This performance can be
due to the fact that 78% of the MWEs present in the
DimSum tweets test set are not present in the created
lexicon of MWEs. The lexicon-based approach cannot
find MWEs not present in the lexicon of the system. In
other words, although reasonably precise, the lexicon-
based system is unable to generalise and obtains poor
recall, especially given that most of the corpora from
which it was extracted is out of domain.
All LSR configurations outperform the lexicon-based
approach. We observe that LSR2−7 configurations im-
prove both recall and precision (in terms of MWE-based
F1 measure) compared to the lexicon-based approach.
This suggests that LSR configurations generalise and
detect MWEs that are not present in the same form in
the training set.
LSR5 achieves the best results in terms of MWE-based,
token-based and MWE-link-based F1-scores. Compar-
ing token-based F1-scores of LSR5 and of the lexicon-
based system (56.8% versus 28.5%), we observe that
the LSR5 system predicts partial MWEs better.
In order to study the impact of the tagging schemes,
we compare three LSR configurations trained on the
same corpus with different tagging schemes: LSR1,
LSR2 and LSR3. They are trained on Streusle training
set with “BIObio”, “BIOo-cat” and “BIOo” tagging
schemes. From Table 2, we observe that the complex
“BIObio” tagging obtains lower F1 scores. Indeed, the
LSR1 system using “BIObio” obtains 36.1% MWE-
based F1 score compared to 43.3% achieved by LSR2

or LSR3 systems. We observe the same performance for
configurations using “BIOo-cat” and “BIOo” tagging,
which indicates that adding the MWE categories does
not help the system. This is confirmed by the results
obtained by LSR6 and LSR7.
Now, we focus our observation on the configurations
using the same tagging schemes and different training
sets: LSR3, LSR4, LSR5 and LSR7. We observe that
LSR4 has the lowest F1 scores, reaching 41.2% MWE-
based score. This can be due to the fact that it utilises
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Configurations Labels MWE-based Token-based MWE-link-based
(train corpus) Precision Recall F1-score F1-score F1-score
Lexicon-based - 45.5 21.0 28.7 28.5 25.9
LSR1 (ST) BIObio 45.5 ± 3.4 29.9 ± 2.0 36.1 ± 2.4 47.6 ± 1.3 43.8 ± 1.4
LSR2 (ST) BIOo-cat 53.7 ±1.1 36.4 ±2.6 43.3 ±1.6 53.5 ±2.1 51.2 ±2.1
LSR3 (ST) BIOo 49.0 ±2.7 39.2 ±4.1 43.3 ±1.5 54.7 ±1.8 52.0 ±2.0
LSR4 (DSM) BIOo 61.1 ±2.7 31.2 ±2.6 41.2 ±2.3 51.8 ±3.1 48.5 ±2.7
LSR5 (ST-DSM) BIOo 60.4 ±2.5 37.9 ±0.9 46.5 ±0.3 56.8 ±1.0 54.0 ±1.5
LSR6 (ST-PSM) BIOo-cat 53.2 ±1.5 37.1 ±2.0 43.6 ±1.3 54.1 ±1.7 50.9 ±1.7
LSR7 (ST-PSM) BIOo 50.0 ±4.4 39.9 ±3.3 44.1 ±0.9 54.7 ±2.1 51.9 ±2.4

Table 2: MWE identification results on the DimSum test tweet set. For each result, the average score and the
standard deviation of 5 runs are given (except for the lexicon-based configuration). “ST”, “DSM” and “PSM” stand
for Streusle, DimSum and PARSEME, respectively. “Labels” represents the BIO labelling scheme for LSR.

the smallest training set which contains 987 sentences,
compared to LSR3, LSR5 and LSR7 systems which are
trained on more than 2,724 sentences. The LSR7 sys-
tem, which is trained on the Streusle and PARSEME
corpora, does not improve the F1 score compared to the
LSR3 system, which uses only the Streusle training set.
This can be due to the fact that the LSR7 system utilises
two DNN models trained independently. The LSR5

system, which is trained on the concatenated Streusle
and DimSum training sets, achieves the best F1 scores:
46.5%, 56.8% and 54.0% of MWE-based, token-based
and MWE-link-based F1 scores, respectively. This in-
dicates that a single system trained on both in- and out-
of-domain data can probably benefit from both sources
of information, as the LSR5 system is trained on tweets
and non-tweets data.
Our experiments suggest that training an LSR system
on tweets and non-tweets data with the “BIOo” tagging
scheme is the best configuration for the MWE identifica-
tion task on tweets and it outperforms the lexicon-based
approach. This is an encouraging result for the follow-
ing experiments, as we will see in the next section.

4. Hate Speech Detection with MWE
Features

Zampieri et al. (2021) show that MWE features, pro-
vided by a lexicon-based MWE identification system,
improve HSD results. In this section, we study the im-
pact of LSR MWE identification systems for the HSD
task and compare it with the lexicon-based MWE sys-
tem described previously.

4.1. Methodology
To study the impact of MWE features for the HSD task,
we utilise two of the MWE identification systems pre-
sented in Section 3: the lexicon-based system and the
best LSR configuration (LSR5).
To integrate MWE features in the hate speech detec-
tion system, we study two architectures of HSD. The
first HSD architecture, named HSD-3B, was proposed
by Zampieri et al. (2021) and is composed of three
branches of neural networks. One branch takes into ac-
count an entire sentence, embedded with the Universal

Sentence Encoder – USE (Cer et al., 2018). Two other
branches deal with MWE features: one branch embeds
the MWE category of each word in the sentence and is
followed by convolutional layers; and the other branch
contains the word embedding of each word composing
the MWEs of the sentence (words that do not belong to
a MWE are not used) and is followed by a bidirectional
LSTM (Bi-LSTM) layer. This latter branch allows to
better represent the contents of the MWEs. The outputs
of the three branches are concatenated and are followed
by two dense layers.
The second HSD architecture, named HSD-2B, is pro-
posed in this work and consists of two branches as pre-
sented in Figure 2. The first branch is dedicated to the
USE sentence embedding as in the HSD-3B system.
The second branch uses word embeddings of all words
of the sentence, concatenated with their corresponding
MWE categories. In this architecture we give more
information to the system (embeddings of all words)
compared to the HSD-3B system. To take into account
past and future context information of each word, a Bi-
LSTM layer is added. The outputs of the two branches
are concatenated and are followed by two dense layers
as in the HSD-3B system.
We compare the HSD-2B and HSD-3B systems with
a baseline system. The baseline system employs only
sentence embeddings (USE) as input and is made up of
two dense layers, without MWE features.
MWE features. The lexicon-based and the LSR5 MWE
systems predict, for each word of a tweet, whether it is
part of a MWE or not. The fine-grained categories of
MWEs are not available for these two MWE identifica-
tion systems. Thus, we see the prediction of MWEs as
binary MWE categories. For the LSR5 MWE predic-
tions, we transform the “BIOo” labels into binary labels
as follows: “B” and “I” labels are transformed into ones,
“O” and “o” labels transformed into zeroes.

4.2. Experimental Setup
We use four Twitter hate speech corpora for evaluation.
The Waseem corpus (Waseem and Hovy, 2016) contains
16,919 tweets annotated in three classes: sexist, racist
and neither. We focus on the HSD task, so we group
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Figure 2: Proposed HSD-2B system with two branches.

together sexist and racist classes into one class (hateful).
Tweets labelled as “neither” are labelled as non-hateful.
The corpus contains 73% of non-hateful tweets and 27%
of hateful tweets.

The Davidson corpus (Davidson et al., 2017) is a tweet
corpus annotated in terms of hate speech, offensive
speech or neither. The corpus contains 24,802 tweets:
76% are offensive, 11.4% are hateful, and 16.6% are
neither.

The Founta corpus (Founta et al., 2018) contains 100k
tweets annotated in four classes: hate speech, abusive
speech, normal speech and spam. Our experiments
focus on HSD, so we remove spam tweets and keep
around 86k tweets. The corpus contains 63% of normal
tweets, 31% of abusive tweets and 6% of hateful tweets.

The HatEval corpus (Basile et al., 2019) is provided by
the SemEval2019 shared task 5. It contains 13k tweets
annotated as hateful and non-hateful speech. It is a
balanced corpus with 42% hateful and 58% non-hateful
tweets.

For the Waseem, Davidson, and Founta datasets, we
utilise 60%, 20% and 20% as training, validation, and
test sets, respectively. For HatEval corpus, we use
the standard corpus partition into training, development
and test sets with 9k, 1k and 3k tweets, respectively.
For Waseem and HatEval, the HSD task is a binary
classification, whereas for the other corpora, it is ternary.

We apply the following pre-processing for each tweet of
all corpora: we remove mentions, hashtags, URLs and
we replace emojis with readable text (e.g., ♥→ :heart:).
To tag MWEs with the lexicon-based system, we lem-
matise tweets with the spacy-udpipe python library.

Hyperparameters of HSD systems. All systems (base-
line, HSD-2B and HSD-3B) utilise USE embeddings of
size 512. As word embeddings, we use the BERTweet
contextual token embeddings (Nguyen et al., 2020) of
size 768. BERTweet uses a tokeniser that splits some
words in several sub-words (e.g, playing → play @ing).
We set the maximal length of tweets to 128 tokens. For
the HSD-3B system, we use the same hyper-parameters
as in Zampieri et al. (2021). For the HSD-2B system,
we set the dimensions of the Bi-LSTM and all dense
layers to 128 and 256 neurons, respectively.

Evaluation metrics. We evaluate our models in terms
of macro-average F1. It is the average of the F1 scores
across all classes.

4.3. Results
The goal of our experiments is to study the impact of
MWE features on a HSD system, and to compare the
lexicon-based and the LSR5 MWE identification sys-
tems for the HSD task. First, we analyse MWE identi-
fication in the target hate speech corpora. Second, we
compare the system with and without MWE features.
Finally, we compare the lexicon-based system with the
LSR5 MWE identification system for the HSD task.

MWE Waseem Davidson Founta HatEvalsystems
lexicon 4,578 6,745 31,391 6,040
LSR5 4,966 10,447 46,679 9,075

Table 3: Number of MWE occurrences tagged by the
lexicon-based and the LSR5 systems in the hate speech
training sets.

MWE identification on hate speech corpora. It is
important to note that, as HSD corpora are not annotated
in terms of MWEs, we have no gold annotations for the
MWE identification task. We can only compare the
number of MWE occurrences tagged by the two MWE
identification systems.
Table 3 displays the number of MWE occurrences
tagged by the lexicon-based and by the LSR5 systems.
We observe that the LSR5 system has tagged more
MWEs than the lexicon-based system. We observed
similar results on the DimSum tweet test set (see Sec-
tion 3.2).
HSD systems. We compare three models: the baseline
model (without MWE features), HSD-3B and HSD-2B
(with MWE features).
Table 4 displays the average macro-F1 of 5 runs on
the Waseem, Davidson, Founta, and HatEval test sets.
The last column represents the average of the macro-F1
across the four corpora. The baseline system achieves
72.0% of average macro-F1 score. The systems using
MWE features outperform the baseline system. This
confirms that MWE features are helpful for hate speech
detection. Moreover, the HSD-2B system achieves bet-
ter results on every test corpus compared to the baseline
system, with 73.5% of average macro-F1 score.
The HSD-2B system outperforms the HSD-3B system
(73.5% versus 72.4%), especially on the Davidson and
Founta test sets. This better performance can be due to
the fact that HSD-2B has access to the embeddings of all
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HSD Systems MWE ident.sys. Waseem Davidson Founta HatEval Average
Baseline - 79.5 (±0.1) 72.1 (±0.5) 72.4 (±0.7) 64.1 (±0.4) 72.0

HSD-3B lexicon-based 81.3 (±0.2) 72.2 (±0.9) 71.6 (±0.4) 66.5 (±0.2) 72.9
LSR5 80.8(±0.4) 71.0 (±2.5) 71.8 (±0.6) 66.1 (±0.7) 72.4

HSD-2B lexicon-based 82.3 (±0.7) 72.5 (±2.1) 74.0 (±0.6) 65.1 (±0.5) 73.3
LSR5 81.9 (±0.6) 73.3 (±1.4) 74.1 (±0.7) 64.9 (±1.1) 73.5

Table 4: Average macro-F1 and standard deviation of 5 runs of hate speech detection. The Average column
represents the average of macro-F1 across the four corpora. Underlined results indicate significant improvements
compared to the Baseline (Gillick and Cox, 1989). Systems that obtained the median macro-F1 score are used to
compute significance.

words of the tweet. In the following, we will continue
the analysis only for the best architecture, HSD-2B.
Lexicon-based versus LSR-based MWE identifica-
tion systems for HSD. To perform a deeper analysis,
we compare the influence of the lexicon-based and of
the LSR5 systems on the HSD results for the HSD-2B
system. We observe that these two MWE identifica-
tion systems achieve a similar performances in terms
of macro-F1 (73.5% and 73.3%). The lexicon-based
system outperforms the LSR5 system for the Waseem
and HatEval corpora and vice versa for the other two
corpora. An advantage of the LSR5 MWE identification
system is that larger MWE-annotated corpora will en-
able a better LSR5 system, and potentially increase the
performance of the HSD task.
Our experiments show that the MWE features are use-
ful for the detection of hate speech. Our experimental
evaluation shows that there is no significant difference
between the use of a lexicon-based system and the LSR
identification system for the HSD task.

5. Conclusions and Future Work
In this work, we studied the performance of lexicon-
based and DNN-based MWE identification systems, and
the impact of MWE features on the HSD task, focusing
on tweet corpora.
We proposed and performed an intrinsic evaluation of
7 configurations for the LSR system. We found that
LSR systems outperform the lexicon-based system for
the MWE identification task on the DimSum tweets test
corpus. The best configuration of LSR system is LSR5,
which is trained on tweets and non-tweets data and uses
the most coarse label set.
For the HSD task, we studied the impact of the MWE
features using lexicon-based and DNN-based MWE
identification systems. We proposed an HSD system
with 2 branches of DNNs: the first one uses sentence
embeddings and the second one exploits the token em-
beddings concatenated with the MWE categories for
each word.
We performed our experiments on four hate speech
tweet corpora. The HSD system with MWE features out-
performs the baseline system (without MWE features).
Our proposed HSD system with two branches gives bet-
ter results compared to our previous HSD system with
three branches. The performance of the lexicon-based

and the DNN-based MWE identification systems for the
HSD tasks are similar.
In future work, we would like to combine DNN-based
and lexicon-based approaches to increase the generali-
sation of MWE identification.
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