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2Massey University Te Kunenga ki Pūrehuroa, Auckland, Aotearoa New Zealand
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Abstract
This paper describes the process of data processing and training of an automatic speech recognition (ASR) system for Cook
Islands Māori (CIM), an Indigenous language spoken by approximately 22,000 people in the South Pacific. We transcribed four
hours of speech from adults and elderly speakers of the language and prepared two experiments. First, we trained three ASR
systems: one statistical, Kaldi; and two based on Deep Learning, DeepSpeech and XLSR-Wav2Vec2. Wav2Vec2 tied with
Kaldi for lowest character error rate (CER=6±1) and was slightly behind in word error rate (WER=23±2 versus WER=18±2
for Kaldi). This provides evidence that Deep Learning ASR systems are reaching the performance of statistical methods
on small datasets, and that they can work effectively with extremely low-resource Indigenous languages like CIM. In the
second experiment we used Wav2Vec2 to train models with held-out speakers. While the performance decreased (CER=15±7,
WER=46±16), the system still showed considerable learning. We intend to use ASR to accelerate the documentation of CIM,
using newly transcribed texts to improve the ASR and also generate teaching and language revitalization materials. The trained
model is available under a license based on the Kaitiakitanga License, which provides for non-commercial use while retaining
control of the model by the Indigenous community.
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1. Introduction
Automatic Speech Recognition technology could dra-
matically accelerate language documentation of In-
digenous languages and aid researchers and commu-
nity members in the time-consuming task of manual
transcription. In this paper we describe the creation
of automatic speech recognition (henceforth ASR) for
Cook Islands Māori, an Indigenous Polynesian lan-
guage from the Realm of New Zealand1 Section 1.1
describes the challenges of training ASR for extremely
low-resource Indigenous languages, while section 1.2
reviews previous work in natural language processing
for Cook Islands Māori. Section 2 presents the method-
ology for data processing and ASR training using sta-
tistical and Deep Learning techniques, and section 3
will describe the training results. Finally, section 4 will
describe the future use of this ASR system, as well as li-
censing to ensure that the models remain under the con-
trol of Indigenous communities and contribute to the
development of NLP for other Polynesian languages.

1The Realm of New Zealand includes the Cook Islands,
Tokelau and Niue, as well as “New Zealand proper”, or
Aotearoa as it is known in Te Reo Māori, the Māori of New
Zealand. We will refer to the territory of “New Zealand
proper” as “Aotearoa New Zealand”.

1.1. ASR for Language Documentation
The transcription of spoken audio recordings is a ma-
jor bottleneck in language documentation. There is
an urgent need to accelerate the process of transcrip-
tion, so that communities who speak Indigenous and
minoritized languages can tap into existing recordings
of stories, traditions and genealogies to create language
learning materials and thereby to contribute to the con-
tinued use of their languages. However, the process of
transcribing these languages is substantially more time-
consuming than it is with widely spoken languages like
English. Transcribing an hour of a recording in an In-
digenous language can take up to 50 hours of an ex-
pert’s time (Shi et al., 2021).
Why is this process so slow? There are a series of chal-
lenges unique to the transcription of Indigenous lan-
guages. First, while languages like English have a large
pool of transcribers who are experienced in writing the
language, smaller languages are usually written only
by a reduced number of specialists, typically limited to
linguists and school teachers. This places severe lim-
its on the availability of transcribers and also raises the
cost of generating these transcriptions, given the higher
level of expertise required.
Second, while English has an agreed-upon writing sys-



3873

tem, many Indigenous languages might have multiple
or no fixed orthographies. In practice this means that
a language could be transcribed in numerous divergent
ways depending on who is transcribing. These differ-
ences in orthographic representation can lead to pro-
found schisms between groups and might even inter-
act with pre-existing imbalances of power, where one
group of speakers from a larger and/or wealthier back-
ground might wish to impose their writing style on oth-
ers (Hinton, 2014). These orthographic conflicts add
a layer of consideration that would not be necessary
when working on NLP with a larger language.
Third, while English has millions of hours of audio
from every imaginable genre, recorded in the voices
of millions of different speakers, most languages only
have a handful of recordings available, and making
new ones is an expensive and complex endeavor. This
means that there will always be a cap on how much data
is available to be transcribed in a particular language.
Finally, while there is much English data that is read-
ily usable by anyone, this should not be the case with
data from Indigenous languages, where both the topics
and the people in the recordings might need “restricted”
access because of diverse restrictions that a community
feels should be imposed on a recording or the knowl-
edge it contains (Kukutai and Taylor, 2016).
Because of the reasons mentioned above, generating
the data needed for training ASR of Indigenous lan-
guages is substantially more complex that for lan-
guages with large resources. Despite these difficul-
ties, there is an increasing body of research on how to
adapt ASR to work effectively in Indigenous languages
(Besacier et al., 2014; Jimerson and Prud’hommeaux,
2018; Adams et al., 2019; Foley et al., 2018; Gupta
and Boulianne, 2020b; Gupta and Boulianne, 2020a;
Zahrer et al., 2020; Thai et al., 2019; Partanen et al.,
2020; Zevallos et al., 2019; Matsuura et al., 2020;
Hjortnaes et al., 2020; Levow et al., 2021). Most
systems try to transcribe the language into a vernacu-
lar orthography, but there are also efforts to generate
transcriptions in the International Phonetic Alphabet
(Michaud et al., 2019; Li et al., 2020), which would
be beneficial for languages without writing systems.
Researchers have found that ASR does accelerate the
transcription pipeline (Prud’hommeaux et al., 2021). It
can also be a significant benefit for the community by
providing an opportunity for the transcribers to prac-
tice and ultimately connect with their language, as well
as providing younger speakers with technological tools
that might help encourage their participation in lan-
guage work (Lillehaugen, 2016; Aguilar Gil, 2014).

1.2. Previous NLP work in Cook Islands
Māori

Cook Islands Māori (Glottolog raro1241, henceforth
CIM) is an East Polynesian language spoken in the
South Pacific. It has 14,000 speakers in the Cook Is-
lands and 7,000 in Aotearoa New Zealand (Nicholas,

2018)2 as well as a small number of additional speak-
ers elsewhere in the world. It is a vulnerable lan-
guage (Moseley, 2010), but its vitality varies across the
archipelago. In the central island of Rarotonga, which
has the main airport and more contact with English-
speaking countries, there are fewer children who speak
CIM, and education is delivered mostly in English. On
the other hand, on the smaller islands, also called the
Pā 'Enua, CIM has considerably more vitality. It is still
widely spoken by children, and it is commonly used in
school and daily life (Nicholas, 2018).
CIM has had a writing system and a wide range of
written materials since the mid 19th century (Nicholas,
2018), but a great deal of pre-processing is required
before it can used for NLP, such as digitization, opti-
cal character recognition, and orthographic conforma-
tion. Furthermore, due to the shift towards English in
the community over the last fifty years, little new mate-
rial is produced in CIM, which is also not widely used
in printed, audiovisual or social media. This means that
there are limited existing CIM resources ready to train
NLP tools. The largest resource is Te Vairanga Tuatua
(Nicholas, Sally Akevai, 2012), a collection of audio
recordings geared towards linguistic research, archived
in the Paradisec repository (Barwick and Thieberger,
2012). It contains recordings from elders across the
Cook Islands and Aotearoa New Zealand and is the ba-
sis of the most comprehensive grammar of the language
(Nicholas, 2017). Approximately 25% of the record-
ings have been transcribed and this data was used to
create the first NLP tool for CIM, a part-of-speech tag-
ger (Coto-Solano et al., 2018). It has also been used
for linguistic research using untrained forced alignment
(Nicholas and Coto-Solano, 2019; Coto-Solano et al.,
2022). A 309,301 word corpus that combines this data
with other written sources (Simiona, 1979; Tanga et
al., 1984; Taraare, 2000; YouVersion, 2014) was used
to develop a predictive keyboard for mobile phones
(Quint and Oh, 2021), a tool that could be immedi-
ately practical to community members. Figure 1 shows
a screen capture of this application.
The transcribed sub corpus of Te Vairanga Tuatua was
used to conduct the first ASR experiments with CIM.
Approximately 60 minutes of transcribed audio served
as training data for an ASR model using Kaldi (Foley
et al., 2018); it obtained a word error rate (WER) of 64.
After this initial attempt, a second experiment was con-
ducted with the assistance of Caleb Moses and Drag-
onfly Data Science in Wellington, New Zealand. This
experiment used transfer learning in DeepSpeech (Han-
nun et al., 2014). It took the same 60 minutes of exist-
ing CIM transcriptions and trained with the support of a
large model for Te Reo Māori, which was itself trained
on 300 hours of crowdsourced data from 1300 speak-
ers (Te Reo Irirangi o Te Hiku o Te Ika, 2017). This

2There are 17,000 inhabitants in the Cook Islands
(MFEM, 2016) and approximately 81,000 people of Cook Is-
lands ethnicity in Aotearoa New Zealand (StatsNZ, 2018).
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Figure 1: Predictive Keyboard for Cook Islands Māori
(Quint and Oh, 2021)

model achieved a median character error rate (CER) of
31. Both of these results, encouraging but still far away
from a practical documentation tool, indicated the need
to continue the transcription of CIM data in order to
improve ASR performance.

2. Methodology
In this section we will describe the preparation process
of our data, which included manual transcription, input
normalization and exclusion of data points with code-
switching. We will then describe the technical aspects
of our ASR experiments.

2.1. Data preparation
The data used for ASR training comprises glossed
audio example sentences from the CIM grammar
(Nicholas, 2017), transcribed recordings from Te
Vairanga Tuatua, as well as transcribed audio collected
from 2017 to 2020 (Nicholas, Sally Akevai, 2012).
These recordings contain traditional stories, genealo-
gies, and other narrations from adult and elderly speak-
ers (aged 30 to 75) of the language. This is precisely
the type of language we wish to transcribe because it
is extremely valuable for language documentation and
revitalization3. Because the rate of transcription was
so slow, we initiated a second type of data collection:
speakers reading traditional stories. These recordings
were significantly faster to transcribe as the transcriber

3The demographics of the CIM speaking population
makes a crowdsourcing campaign challenging. Most of our
data would come from community members in Aotearoa New
Zealand who have much better internet access than people in
the Cook Islands. They are likely to be younger and learn-
ers rather than highly proficient speakers. This data would be
valuable and it would increase our training set, but it would
be different from the elders whose transcription we need to
prioritize.

could use the source text as a guide and did not need to
spend as much time deciphering the audio.4

Transcription of this type of data is a painstaking task.
It was carried out by Sally Akevai Nicholas, Piripi
Wills, Liam Koko’ua and Emma Powell over a period
of 3 years. The transcribers are either native speak-
ers or advanced learners of the language and belong to
the Cook Islands community. The orthography chosen
for the transcription was the one described in Nicholas
(2013) and Nicholas (2017). Because the recordings
were transcribed for use in linguistic description, the
transcriptions were made using ELAN (Sloetjes and
Wittenburg, 2008), and they included punctuation as
well as a number of discursive and pragmatic tags (e.g.
<VERSE> and <LAUGH>). These tags were re-
moved to provide a transcription for training that only
contained the phones of the language.
There were a few issues to deal with regarding the or-
thography. Because the dataset was transcribed by a
single team, there was little need to normalize the or-
thography in the texts. However, the glyph for the glot-
tal stop was represented in a number of different ways
when stored electronically, and it therefore needed to
be normalized throughout the input. The glottal stop is
ideally represented by the saltillo glyph ('), but it was
also found in the input as an apostrophe, a typographic
apostrophe, an HTML apostrophe (&quot) or a Hawai-
ian 'okina. The solution adopted here was to convert
all the glottal stop representations into a temporary ‘q’,
so that the word no'o ‘stay’ was represented as noqo
in the ASR input. A similar approach was adopted for
the vowel length. CIM vowels can be long or short,
and a long vowel is represented with a macron (e.g. pā
[pa:] ‘door’). In order to avoid Unicode issues when
using older ASR training algorithms (see section 2.3
below), the vowel length was transcribed using the let-
ter ‘x’ next to the long vowel. In this case, the word pā
‘door’ would be transcribed pax in the input given to
the ASR. Both of these modifications (the glottal stop
‘q’ and the vowel length ‘x’) were later corrected in the
ASR output.
For this experiment we excluded data with English
words in it. This could constitute a single word in
English (e.g. Ko Chris ē tōna pupu ‘Chris and her
group’) or an entire phrase. There was relatively little
English-CIM code-switching in the dataset (which was,
after all, mostly made up of adult and elderly speakers
retelling traditional stories), but leaving code-switching
out is a major weakness of the system in the long run.
This is because the Cook Islands are a multilingual ter-
ritory where most of the population speaks both En-
glish and CIM. This multilingual tendency is even more
pronounced in young speakers and in Aotearoa New
Zealand so, while our system might have good perfor-
mance with elders, it risks leaving out the speech of

4These recordings also served a valuable language revi-
talization purpose in “re-oralizing” stories that had largely
ceased to be passed down orally.
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younger Cook Islanders. As the corpus grows, we in-
tend to gather more data with code-switching into En-
glish for a more realistic representation of the linguistic
circumstances of the archipelago.
The transcription effort yielded a total of 5033 sen-
tences (36,390 words) recorded in 237 minutes of audio
(3 hrs 57 mins). The recordings had a median duration
of 2.3 seconds, with a minimum of 0.3 seconds and a
maximum of 15.1 seconds. The transcriptions had a
median size of 6 words (29 chars), with a minimum of
one word (1 character) and a maximum of 42 words
(193 chars). Figure 2 shows the distribution for word
and character length of the transcriptions, as well as the
duration in seconds of the recordings. There are a total
of 10 speakers in the corpus who come from 4 different
islands: Rarotonga, Penrhyn, Ma'uke and 'Atiu.
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Figure 2: Length of CIM recordings and transcriptions

2.2. First Experiment: ASR Training
For the first experiment we include all of the speakers
in all of the three sets (training, testing and validation).
This helps us measure a system that could be used to
transcribe more data from the same speakers, who have
provided numerous recordings which are still untran-
scribed.
We chose three algorithms to train our data. The first
was a statistical learning algorithm, based on Hidden
Markov Models (HMM) with Gaussian Mixture Mod-
els (GMM), instantiated in Kaldi (Povey et al., 2011).

While this approach might be older than Deep Learn-
ing methods, statistical learning can make better use of
smaller datasets and can therefore provide an advan-
tage with the relatively small amount of data available
for CIM training. We used a trigram language model
and the default hyperparameters for training (triphone
transitions, 2000 HMM leaves, 10,000 Gaussian com-
ponents and 35 training iterations)5.
For the second approach we chose a Connectionist
Temporal Classification (CTC) algorithm (Graves et
al., 2006), implemented using two Deep Learning
based systems. The first one was DeepSpeech (Han-
nun et al., 2014), which has already been used for
Te Reo Māori from Aotearoa New Zealand (Moses et
al., 2020; Mahelona, 2020). DeepSpeech uses bidi-
rectional recurrent neural networks (BiRNN) to trans-
form the audio signal into a sequence of glyphs, and
then CTC to transform this sequence into a potential
transcription in the chosen orthography. DeepSpeech
was trained using a KenLM (Heafield, 2011) trigram
language model, with training, validation and testing
batch sizes of 200/60/60. The optimal model was cho-
sen after 40 training epochs; the optimum was usually
reached after 25-35 epochs.
For the third approach we chose XLSR (Conneau et
al., 2020), which is derived from the Wav2Vec2 archi-
tecture (Baevski et al., 2020). For simplification pur-
poses, we will refer to the XLSR-Wav2Vec2 combina-
tion as Wav2Vec2. This algorithm uses Convolutional
Neural Networks to encode the audio (Mohamed et al.,
2019) and then transforms it into quantized audio em-
beddings using information from 54 languages. These
embeddings are then used by a transformer (Vaswani
et al., 2017) to decode the audio signal into a transcrip-
tion. This family of algorithms has proven effective
in training from reduced datasets; e.g. producing ac-
ceptable results after training on only 10 minutes of
English input. Therefore, we predict it would be able
to learn effectively from our small dataset. Wav2Vec2
was trained using its default settings: Using Transform-
ers 4.4.0, with a learning rate of 3x10-4, batch size 16,
attention and hidden dropout 0.1, layer drop 0.1, an in-
termediate layer size of 4096, a hidden layer size of
1024 (24 hidden layers), 16 attention heads, and a total
of 2400 steps. Beyond this point, the system began to
overfit.
For each of the three systems (Kaldi, DeepSpeech and
Wav2Vec2), we took the 5033 sentences from all 10
speakers and randomly shuffled the sentences to create
20 train/validation/test sets for each of the systems. We
split the sentences into training, validation and testing
sets with 80%, 10% and 10% of the sentences (4027,
503 and 503 sentences respectively). For each of the
twenty rounds we extracted the median word error rate
(WER) and median character error rate (CER) of the

5A Kaldi monophone model was also trained, but its re-
sults, CER=17 and WER=33, were substantially inferior to
those of the triphone model.
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test set. We then calculated an average and a stan-
dard deviation from those twenty medians; those are
the numbers reported below.
Training for Kaldi took approximately 40 minutes for
each of the 20 runs, for a total of 13.3 hrs. It was
carried out on a personal laptop computer using one
Intel i7 CPU. Training for DeepSpeech took approxi-
mately 65 minutes per model (total of 21.7 hrs) using
the HPC infrastructure at Dartmouth College, which
provided 16 parallel CPUs per run. Finally, each round
of Wav2Vec2 training took approximately four hours to
complete (total of approximately 80 hrs) using Google
Colab with one NVIDIA Tesla P100 GPU.

2.3. Second Experiment: Held-Out Speakers
The first experiment, described above, allows us to
study how the system will perform when transcribing
new audio from the same speakers. In the second ex-
periment we study the system’s generalization capabil-
ities, specifically how it would behave when it encoun-
ters a completely new speaker.
In order to study this we made six partitions of the
data where the training+validation and testing sets con-
tained different speakers. This way, the ASR would
train on one subset of speakers, and would perform its
testing on a different set of speakers that it hadn’t en-
countered before. For example, for the first two par-
titions, we collected speakers whose files would add
up to approximately 10% of the files in the dataset.
We then excluded them from the training+validation
sets, constructing those by randomly shuffling sen-
tences from all of the other speakers. Partition #1,
for example, restricts the speakers {A,K,R,T2} to the
test set (10% of the files); we then took the rest of
the speakers {B,J,T1,T3,M1,M2} and randomly shuf-
fled their files into a training set (80%) and a validation
set (10%). This made these partitions the same in size
as the train-valid-test model in the first experiment.
There were four speakers whose files encompassed
more than 10% of the dataset. When this was the case,
these speakers were placed in the test set, even if this
made the test set larger and the training set smaller. For
example, in partition 5, speaker J has 27% of the files.
In this case the test set only contained the files from
speaker J, and the train+val sets were random shuf-
fles of the files from the other nine speakers. Because
only 73% of the total files are now left for training and
validation, the training set contains 90% of those files
(65%), and the validation set contains 10% of those
files (8%). Table 3 in section 3.2 contains detailed in-
formation on the speakers and sizes of each partition.
We trained five times, using five random shuffles per
partition. We only performed the training using the
XLSR-Wav2Vec2 system, using the same hyperparam-
eters and stopping conditions as in the first experiment.
Each round of training took approximately four hours
(for total of approximately 30 hrs) using Google Colab
with one NVIDIA Tesla P100 GPU.

Splitting the data this way ensures two things. First,
that the system had no access to data from held-out
speakers during the training phase. Second, that there
are words in the test set that the language model hasn’t
seen before. This ensures that the model is facing new
words and that it is not simply functioning as a forced
aligner. For example, the first random shuffle of par-
tition 6 contained a total of 522 unique words: 361 of
them were present in both the testing and the train+val
sets, but 161 were found only in the testing set. This
ensures that the model accounts for words that were
unseen in the training.

3. Results
3.1. Results of ASR Training
Figure 3 shows the results of the first experiment. It
shows the word and character error rates for the three
ASR systems trained on the entirety of the data, where
all of the speakers were present in the train+val+test
sets. The first noticeable pattern is that DeepSpeech
had much lower performance than the other systems.
The twenty DeepSpeech models had a mean median of
CER=22, and a mean median of WER=41. In the case
of WER, this error is approximately almost double than
that for the other systems. This is not a surprise given
that DeepSpeech belongs to a family of Deep Learning
algorithms that need a large mass of data to train cor-
rectly (Goodfellow et al., 2016; Glasmachers, 2017).
The group working on Te Reo Māori has reached ap-
proximately WER=10 using DeepSpeech (Mahelona,
2020), but this might be because of their large mass of
data (between 300 and 400 hours).

Figure 3: Median WER and CER for Cook Islands
ASR by type of training

Table 1 shows the mean and standard deviation for the
WER and CER in the three systems. These numbers are
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the average of the medians from each of the 20 mod-
els run for each system. Kaldi still achieves a slightly
higher performance in transcribing complete words, as
measured by the WER (mean: 18±2, median: 18),
but Wav2Vec2 follows relatively closely, (mean: 23±2,
median: 23). Moreover, Wav2Vec2 is virtually tied
with Kaldi when the error is measured by the number
of correctly transcribed characters: Kaldi has a CER of
7.5±0.8 (median: 7.5), and Wav2Vec2 has the slightly
lower CER of 6.1±0.7 (median: 6.1). This means that,
out of every 100 characters in the ASR output, approx-
imately 93 are transcribed correctly by both systems.

WER CER
Kaldi 17.9 ± 1.7 7.5 ± 0.8
DeepSpeech 41.1 ± 2.0 21.9 ± 1.6
Wav2Vec2 22.9 ± 2.0 6.1 ± 0.6

Table 1: Average medians for word and character error
rate for CIM trained with three ASR systems

In order to examine the performance of these systems
more closely, table 2 shows example transcriptions
from each of them. Wav2Vec2 is generally more accu-
rate and could provide better results within a language
documentation pipeline. The analysis of accuracy for
specific phones remains part of our future work, but
an initial examination of the data shows that most of
the errors in Wav2Vec involve the modification of vow-
els (e.g. motoka/moutakā ‘car’, ketu/kit ‘dig’, 'oki/'aki
‘stay’), the insertion or deletion of a glottal stop (e.g. ka
iroiro / kā'iro'i roa ‘will be mixed up’), or the length-
ening of a short vowel (e.g. motoka/moutokā ‘car’, ka /
kā'iro'i ‘will be mixed up’). Kaldi has many of these er-
rors, but it also tends to replace entire words, probably
influenced by its heavy reliance on its language model
(e.g. ki ‘to’ instead of i ‘in’; 'oki ‘stay’ instead of au
‘I’; ki ‘to’ instead of ketu ‘dig’).
Despite these issues, the transcriptions produced by
Kaldi and Wav2Vec2 could be useful as a “first pass”
that would then be corrected by a human expert. This
promises to be faster than the current completely man-
ual transcriptions, thereby providing a virtuous circle
that improves the ASR and increases the amount of
transcribed materials available for the generation of lin-
guistic and language learning materials.

3.2. Second Experiment: Held-Out Speakers
Table 3 shows the results of the second experiment,
where speakers were systematically held out of the
training and validation sets with the purpose of testing
how the model would transcribe new speakers. These
held-out models had higher error rates than those which
saw all the speakers during training. When averaged
across the six partitions, the median CER for held-
out speakers was 14.9±7.2, and the median WER was
46.4±15.6.
The results for each partition show a large amount of
variation depending on which speaker is held out. For

example, partition 4 (speaker B held-out) had a perfor-
mance of CER=6 and WER=25, similar to the best per-
forming models in the first experiment. On the other
hand, partition 6 (speaker T1 held out) had a much
higher error rate, with CER=23 and WER=66. This
was also the case with partition 3 (speaker M1), with
median CER=25 and WER=65. These two speakers
(M1 and T1) are the only representatives from their is-
lands, which might explain the lower performance of
the models. Moreover, speaker T1 has a faster speech
rate (2.5 words per second) than the average for the
rest of the speakers (2.1±0.4 words per second), which
could also account for the difficulties of the model.
The results of the second experiment show that, despite
reduced performance, the system is still able to perform
transcriptions that could help accelerate language doc-
umentation. For three of the partitions the CER rates
remained below 12, indicating that, roughly, only one
in every nine letters of the transcription would be in-
correct. Even averaging across partitions, the median
CER was 15, which roughly corresponds to one in ev-
ery seven letters being mistranscribed. This rate is still
helpful and could represent a major contribution to the
difficult task of transcribing Cook Island Māori even
when the system faces a speaker it has never trained
for before.

4. Discussion
The results show evidence that Deep Learning solu-
tions can perform similarly to statistical learning when
it comes to the very small datasets involved in In-
digenous language speech recognition. Wav2Vec2,
which uses Transformers and significant pretraining,
obtained results similar to those of Kaldi. This is rel-
evant because the initial tests of Wav2Vec2 (Baevski
et al., 2020) used simulated low-resource conditions,
using truncated corpora of English instead of actually
low-resource languages. Our results show that sys-
tems like XLSR-Wav2Vec2 could also deliver promis-
ing results for extremely low-resource languages like
Cook Islands Māori, even when the system is attempt-
ing to transcribe new speakers. The fact that a Deep
Learning solution worked is also relevant because, al-
though the training process of Wav2Vec2 takes sub-
stantially longer time and could potentially emit more
CO2 (Strubell et al., 2019), these Deep Learning solu-
tions are also much easier to train and maintain, which
could allow for their wider use by more communities.
The results also show that ASR could be successfully
applied to a language documentation pipeline for CIM.
Getting to 4 hours of transcription took a substan-
tial amount of effort, but the ASR will become part
of a virtuous cycle, where new recordings are tran-
scribed automatically, giving them a “first pass” that
could reduce the work of the transcribers. This could
make the transcription process quicker, and thereby
provide more data to continue training and improving
the model. Prud’hommeaux et al. (2021) have con-
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English One day I was just sitting in my car
Target i tēta'i rā tē no'o 'ua ara au i roto i tōku motoka WER CER
Kaldi ki tēta'i rā tē no'o 'ua ara 'oki i roto i tōku motoka 15 9
DeepSpeech i tēta'i a te no'o ara i roto i tōku motoka 31 18
Wav2Vec2 i tēta'i rā tē no'o 'ua ara au i roto i tōku moutakā 8 5

English I was sure that it was the pig who had rooted (it up)
Target kua kite ra 'oki au ē nā te puaka i ketu WER CER
Kaldi kua kite rā 'oki au e nā te puaka i ketu 18 5
DeepSpeech kite rāi koe i nā te puaka i ki 55 38
Wav2Vec2 kua kite rā 'aki au ē nā te puaka i kit 27 10

English Absolutely, it will get mixed up
Target āe 'oki ka iroiro atu WER CER
Kaldi 'aere ka'iro i roa atu 80 50
DeepSpeech āe ki ka'iro 'oki roa te 100 50
Wav2Vec2 āe 'oki kā'iro'i roa atu 40 23

Table 2: CIM ASR Output Examples for three ASR systems

Partition
Train-Validation-Test
Splits (#files and %) WER CER

Test
speaker(s)

% total
files

% total
time

1 4036 - 504 - 493 32.9 ± 0.9 8.4 ± 0.2 A 3.7 3.4
80% - 10% - 10% K 3.6 4.5

T2 2 4.5
R 0.5 1.0

2 4007 - 500 - 526 40.1 ± 1.9 11.0 ± 0.5 T3 6.9 7.6
80% - 10% - 10% M2 3.4 7.2

3 3849 - 481 - 703 64.5 ± 3.1 24.5 ± 1.0 M1 14.0 8.0
76% - 10% - 14%

4 3769 - 419 - 845 25.0 ± 0.0 5.9 ± 0.3 B 17.0 18.5
75% - 8% - 17%

5 3268 - 408 - 1357 50.0 ± 0.0 16.4 ± 0.5 J 30 27
65% - 8% - 27%

6 3532 - 392 - 1109 65.9 ± 1.9 23.0 ± 0.2 T1 22 15
70% - 8% - 22%

Average 46.4 ± 15.6 14.9 ± 7.2

Table 3: Average medians for CER and WER with speakers held out of the training and validation sets

ducted experiments designing precisely such a pipeline
for the Seneca Onödowá’ga: language and found that
ASR significantly accelerates transcription6. Figure 4
shows a potential workflow for this virtuous cycle. Our
next step is to implement an easy interface so that the
transcription can be carried out by linguists and com-
munity members without having to interact with the
Kaldi or Wav2Vec2 code. Such an interface could, for
example, provide an option to upload an audio file, or

6Prud’hommeaux et al. (2021) also found an interesting
result: while the transcription itself was faster, some of the
transcribers preferred to do the work completely by hand be-
cause it let them get closer to the data, which made them feel
a stronger connection to the language. This is highly relevant
because we seek to attract youth to language through technol-
ogy, and keeping this connection is an important part of the
continuity of our NLP work.

for the user to record themselves, and then conduct the
ASR processing in the background.

Figure 4: Example of cycle for ASR in language docu-
mentation

There is much future work that is still needed to im-
prove these models. The first change will be to incor-
porate a language model to constrain the output and
decrease the word error rate of Wav2Vec2, bringing it
closer to the Kaldi results. A second necessary change
is to increase the length of transcribed recordings so we
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can measure the performance of the data when handling
longer stretches of speech. As shown in figure 2 above,
half of the recordings used for this paper contained only
between one and six words, so the system needs more
training on longer stretches of speech. A third neces-
sary step is to include data from the islands that are not
in the present corpus (e.g. Aitutaki, Mitiaro, Mangaia,
Manihiki, Rakahanga), as well as testing the perfor-
mance of the system in the closely related but distinct
language of Pukapuka (Glottolog puka1242).
Another future experiment will examine if the tran-
scription of vowel length has an effect on error rates.
As described in section 2.1, the input of the system
was manipulated so that the vowel length was repre-
sented with a glyph different from the vowel glyph. For
example, the orthographic form pā was written pax
in the input, with the ‘x’ representing the lengthening
of the vowel. There isn’t consensus on best practices
for representing suprasegmental features such as vowel
length in ASR input for extremely low-resource lan-
guages. Research in languages with nasal vowels such
as Portuguese and Hindi has indicated that nasality is
likely best represented in the same glyph as the vowel
because nasality alters vocalic quality (Meinedo et al.,
2003; Jyothi and Hasegawa-Johnson, 2015). As for
tone, there are contradictory results, but results from
Bribri (Coto-Solano, 2021) indicate that representing
the tone separate from its vowel leads to lower ASR
error. This might be because tonal trajectories don’t
have as strong of an effect on the quality of the vowel.
Given this, what would be the best representation for
vowel length in CIM ASR input? Is the input pax op-
timal, where the vowel and the length are represented
separately, or would it be better to represent this word
with only two glyphs, where the second one has the in-
formation for both the vowel and the length (e.g. pā)?
Coto-Solano (2021) provides evidence that differences
in transcription can lead to differences in WER, even
using Deep Learning, so, given the paucity of data for
these languages, every bit of advantage could be useful.
A final future experiment should explore applying these
ASR techniques to different Indigenous languages.
The encouraging results from experiment 1 (WER=23,
CER=6) might be influenced by the fact that CIM has a
relatively small phonemic inventory (9-12 consonants,
5 short vowels and 5 long vowels) and relatively sim-
ple (C)V phonotactics. Moreover, CIM has few mor-
phological inflections, so the system has relatively less
phonemic, phonotactic and morphological variation to
learn. This methodology needs to be tested on a typo-
logically wider range of languages to confirm its gen-
eral applicability.
One important aspect of this work has to do with data
sovereignty. The audio is available freely (Nicholas,
Sally Akevai, 2012), and the trained model is available
for use by third parties (https://github.com/
Akevai/CIM-ASR-Models). However, we need to
safeguard the data sovereignty of the Indigenous com-

munity that the data belongs to. The members of the
Cook Islands community should manage the data, so
the model was deposited in a GitHub account belong-
ing to one of the Indigenous researchers in the team
(Nicholas). Similar efforts have been made to ensure
that members of the Cook Islands community retain
control of the audio files, the transcriptions and the
trained models. In the same vein, we seek ways to
bring the fruits of this work to language teachers and
other members of the CIM speaking community so that
they might find new and creative ways to use it. Like-
wise, we seek collaborations with other Pacific com-
munities, so that these models can be used to accel-
erate the development of speech recognition tools for
additional Polynesian languages, in particular by us-
ing these models for transfer learning. Because of this,
we are using a localization of the Kaitiakitanga Li-
cense (https://github.com/TeHikuMedia/
Kaitiakitanga-License), which allows for
non-commercial use of these models while retaining
permission for their use within the Indigenous commu-
nity. If you wish to use these models, please contact the
authors for information on how to do so.

5. Conclusions
In this paper we have described the process of tran-
scription, data preparation, and training of automatic
speech recognition for an Indigenous language of Poly-
nesia, Cook Islands Māori. The best performing sys-
tems, trained using XLSR-Wav2Vec2 and Kaldi, can
transcribe short utterances of CIM with a character
error rate of CER=6, and a word error rate of be-
tween WER=18 and WER=23. Even when speakers
are held out, the character error rate can oscillate be-
tween CER=6 and CER=25, which is potentially ade-
quate to accelerate the transcription of new recordings.
The paper also provides evidence that Deep Learning
can work in truly low-resource environments and with
minority/Indigenous languages. We will continue the
work to expand this dataset to include a wider geo-
graphical and age coverage of the Cook Islands pop-
ulation, but this work will be made faster and easier by
incorporating ASR into the documentation pipeline.
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