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Abstract
For a long time, text mining and information extraction for the medical domain has focused on scientific text generated by
researchers. However, their direct access to individual patient experiences or patient-doctor interactions is sometimes limited.
Information provided on social media, e.g., by patients and their relatives, complements the knowledge available in scientific
text. It reflects the patient’s journey and their subjective perspective on the process of developing symptoms, being diagnosed
and offered a treatment, being cured or learning to live with a medical condition. The value of this type of data is therefore
twofold: Firstly, it offers direct access to people’s perspectives. Secondly, it might cover information that is not available
elsewhere, including self-treatment or self-diagnoses. Named entity recognition and relation extraction are methods to structure
information that is available in unstructured text. However, existing medical social media corpora focused on a comparably
small set of entities and relations and were focused on particular domains, rather than putting the patient into the center of
analyses. With this paper we contribute a corpus with a rich set of annotation layers following the motivation to uncover and
model patients’ journeys and experiences in more detail. We label 14 entity classes (incl. environmental factors, diagnostics,
biochemical processes, patients’ quality-of-life descriptions, pathogens, medical conditions, and treatments) and 20 relation
classes (e.g., prevents, influences, interactions, causes) most of which have not been considered before for social media data.
The publicly available dataset consists of 2,100 tweets with ≈6,000 entity and ≈3,000 relation annotations. In a corpus analysis
we find that over 80 % of documents contain relevant entities. Over 50 % of tweets express relations which we consider essential
for uncovering patients’ narratives about their journeys.

Keywords: social media health mining, biomedical information extraction, BioNLP, relation extraction

1. Introduction
On social media, doctors, patients, concerned
relatives or other laypeople frequently discuss medical
information. Twitter posts for example contain
opinions and recommendations about treatments,
recounts of medical experiences, or hypotheses and
assumptions about medical issues like in Figure 1. This
information is by design centered around the patient. It
is impacted by the patient’s journey and their subjective
perspective on processes like developing symptoms,
being diagnosed and offered a treatment, being cured
or learning to live with a disease. This data offers direct
access to people’s perspectives and covers information
that is not available elsewhere, e.g., aspects that might
not be considered important or difficult to assess in
clinical settings. This includes, e.g., assessments of a
patient’s quality of life (Table 1, Ex. 2 and 5), or which
environmental factors people consider when talking
about their health (Table 1, Ex. 3 and 4).
At the same time, established resources and systems
for text mining and information extraction in the
medical domain have mostly been centered around

As
[
females
SOCIO-ECON

]
we tend to have more

[
arthritis

MEDC

]neg influence

Figure 1: Example of our annotation scheme.

scientific and biomedical text generated by researchers.
Such texts seldomly focus on individual patient’s
experiences or patient-doctor interactions which makes
the information and knowledge contained in the text
distant by nature. While scientific resources contain
high quality information, many studies struggle with
gender biases and population imbalance (Weber et al.,
2021), which leads to blind spots in the literature. The
time-consuming nature of clinical studies causes delays
until information is available to practitioners. Both
limitations can be mitigated by accessing social media
data. Duh et al. (2016) find in fact that social media
can lead to earlier detection of adverse drug reactions.
While social media data has come more into focus
recently, existing corpora are limited with respect
to the types of entities and relations they cover.
Most commonly, biomedical entity corpora focus on
diseases, symptoms and drugs (Jimeno-Yepes et al.,
2015; Alvaro et al., 2017, i.a.). With regards to
relation detection, work on Twitter is limited to causal
relations (Doan et al., 2019), or a very small number of
relation classes (i.e. reason-to-use, outcome-negative,
outcome-positive) (Alvaro et al., 2017). This leaves
a gap for medical information needs. As described
above, content from social media holds this type of
information. Extracting it is required if we want to
uncover more fine-grained aspects of patients’ medical
journeys complementary to the knowledge in scientific
text.
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To facilitate research in this area, we contribute
a corpus of medical tweets annotated with a fine-
grained set of medical entities and relations between
them. For the BEAR Corpus of Biomedical Entities
And Relations on Twitter, we annotate 14 entity and
20 relation classes. Entities include environmental
factors, diagnostics, biochemical processes, quality-
of-life assessments, pathogens, as well as more
established entity classes such as medical conditions,
and treatments. Relation classes model how entities
prevent, influence, interact with, cause or worsen other
entities, or how they relate to each other as a symptom,
side-effect, or diagnosis.
The dataset consists of 2,100 tweets with roughly
6,000 entities and 3,000 relations. To the best
of our knowledge the majority of those classes
which are centered around patient journeys have not
been considered before. The dataset is available
at https://www.ims.uni-stuttgart.de/
data/bioclaim.

2. Related Work
Biomedical natural language processing (BioNLP) is
an established field in computational linguistics, with
a rich set of shared tasks including BioCreative and
the competitions organized by the BioNLP workshop
series (bio, 2021; Ben Abacha et al., 2021). Research
topics include automatic information extraction from
clinical reports, discharge summaries or life science
articles, e.g., in the form of entity recognition for
diseases, proteins, drug and gene names (Habibi
et al., 2017; Giorgi and Bader, 2018; Lee et al.,
2019, i.a.). A subsequent task to entity recognition
is relation extraction which covers clinical relations
(Uzuner et al., 2011; Wang and Fan, 2014; Sahu et
al., 2016; Lin et al., 2019; Akkasi and Moens, 2021)
or biomedical relations/interactions (e.g., drug-drug-
interactions) between entities (Lamurias et al., 2019;
Sousa et al., 2021, i.a.).
While scientific resources contain high quality
information, studies might not be fully representative
regarding population groups or gender (Weber et al.,
2021), which leads to blind spots in the literature –
the general population can barely be captured in such
studies. In addition, clinical studies or reports are time-
consuming which inevitably leads to delays, e.g., with
regards to indications of adverse drug events. Both
limitations can be mitigated by accessing social media
data. Duh et al. (2016) find in fact that social media can
lead to earlier detection of adverse drug reactions. This
is why biomedical NLP also works with social media
texts and online content (Wegrzyn-Wolska et al., 2011;
Yang et al., 2016; Sullivan et al., 2016, i.a.), including
established shared tasks (Magge et al., 2021a). A
major focus has been to inform pharmacovigilance by
identifying and extracting mentions of adverse drug
reactions (Nikfarjam et al., 2015; Cocos et al., 2017;
Magge et al., 2021b). Additionally, the community has

explored leveraging social media postings to monitor
public health (Paul and Dredze, 2012; Choudhury et
al., 2013; Sarker et al., 2016; Stefanidis et al., 2017),
and detect personal health mentions (Yin et al., 2015;
Klein et al., 2017; Karisani and Agichtein, 2018).
A few studies compare biomedical information in
scientific documents with social media: Thorne and
Klinger (2017) explore how disease names are referred
to across both domains, while Seiffe et al. (2020) look
into laypersons’ medical vocabulary. A related task is
entity normalization which links a given mention of an
entity to the respective concept in a formalized medical
ontology. Limsopatham and Collier (2016) and later
Basaldella et al. (2020) explore this task for medical
entities on social media showcasing the difficulties in
mapping laypeople’s health terminology to structured
medical knowledge bases.
The ongoing COVID-19 pandemic has sparked
bioNLP research to leverage or contextualize
information about the disease and virus from social
media. A number of studies explore detecting COVID-
19-related misinformation and fact-checking (Hossain
et al., 2020; Chen and Hasan, 2021; Mattern et al.,
2021; Saakyan et al., 2021, i.a.). Others have looked
into monitoring information surrounding the virus
using social media (Cornelius et al., 2020; Hu et al.,
2020).

2.1. BioNER on Social Media
Early contributions on biomedical information
extraction from Twitter aimed at the extraction
of adverse drug reactions from social media – a
fundamentally different use case than scientific text
analytics. The goal is to provide access to information
even before it becomes available to doctors or
researchers. This work includes corpus creation efforts
on dedicated platforms like AskAPatient1 (Karimi et
al., 2015) and Twitter (Nikfarjam et al., 2015; Magge
et al., 2021b)
With a similar motivation, Jimeno-Yepes et al. (2015)
created Micromed, a Twitter corpus annotated with
disease names, drug names, and symptom mentions.
Further, TwiMed (Alvaro et al., 2017) is a dataset
which combines social media and scientific text with
annotations of diseases, symptoms and drug names to
study drug reports across both sources. Annotated with
the same entity classes, the MedRed dataset consists
of Reddit posts (Scepanovic et al., 2020) labeled via
crowdsourcing.
In addition to identifying entities, there has also been
some work on linking them to existing databases. To
facilitate this task for social media, Limsopatham and
Collier (2016) contribute a Twitter corpus in which
entities are linked to the SIDER 4(Kuhn et al., 2016)
database of drug profiles. Basaldella et al. (2020)
subsequently introduce COMETA, a Reddit corpus in

1https://www.askapatient.com/

https://www.ims.uni-stuttgart.de/data/bioclaim
https://www.ims.uni-stuttgart.de/data/bioclaim
https://www.askapatient.com/
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id Tweet

1 [
Prochlorperazine

DRUG

]
is
[
compazine

DRUG

]
, just the generic name.

[
Ativan

DRUG

]
also causes

[
drowsiness

MEDC

]is type of side-effect-of

[...] I was on
[
Lyrica

DRUG

]
to help with the horrific

[
neuropathic pain

MEDC

]
but cause

[
mind numbing

MEDC

]
and

[
bowel problems

MEDC

]side-effect-of
side-effect-of

treats

2 so I
[
stopped taking the Lyrica

MEDC

]
.
[
I’m in more pain now but feel more like me.

QOL

]cause of

3
[
Meditation

HABITUAL

]
,
[

yoga
HABITUAL

]
[...] are all effective at relieving

[
stress

MEDC

]
and helping with

[
#IBS

MEDC

]
.

pos influence
pos influence

pos influence
pos influence

4 [
Alcohol

DIETARY

]
disrupts

[
production of adenosine

PROCESS

]
which results in

[
lighter sleep

MEDC

]
[...]

neg influence cause of

5 [
I’m awake just can’t get going.

QOL

]
Need cat food seriously only reason go out [...]

[
#SpoonieLife

MEDC

]cause of

6
[...] neighbour has been diagnosed with

[
c19
MEDC

]
which means admin has to

[
self isolate

THERAPY

]
and do a

[
test

DIAGNOSTICS

]
[...]

pos influence
may diagnose

7 [
Support dogs

OTHER

]
can improve the effectiveness of

[
dementia

MEDC

]
therapy! Miracle creatures.

pos influence

Table 1: Annotated tweets from the dataset.

which entities are linked to SNOWMED-CT2. With
regards to the groups of entities considered (phenotype,
disease, anatomy, molecule (incl. drugs, toxins,
nutrients etc.), gene/DNA/RNA, device, procedure)
this is similar to our contribution.
Existing resources do not cover enough entities to
extract patient narratives from social media. They do
not allow us yet to access the fine-grained information
that social media content holds, and that would allow
us to fill the information gap in scientific text.

2.2. Detection of Medical Relations on Social
Media

Relation extraction contextualizes entities with each
other. Medical relation extraction resources for social
media are rare. Existing studies have focused on causal
relations (Doan et al., 2019), or a small number of
relation classes (i.e., reason-to-use, outcome-negative,
outcome-positive) (Alvaro et al., 2017).
With regards to scientific text, and specifically clinical
relation extraction, closest to our annotation scheme
are approaches by Uzuner et al. (2011) and Wang
and Fan (2014). Classes for both their work describe
relations between treatments and medical conditions,
relations between two treatments, medical conditions,
or diagnoses (e.g., treatment caused medical problem,
treatment improved or cure medical problem, test
reveal medical problem in Uzuner et al. (2011), or
treats, prevents, has symptom, contraindicates in Wang
and Fan (2014)). However, both work with clinical

2https://www.snomed.org/

and scientific texts. Medical relation extraction on
social media is understudied and missing resources that
facilitate extracting patients’ experiences and opinions
towards entities of their medical history which would
allow us to recover their medical narratives.

3. Corpus Creation
3.1. Data Collection
We collect English tweets between January 01 and
November 02, 2021 using the official keyword-based
Twitter API.

3.1.1. Corpus Subselection
The list of keywords to retrieve the data stems from
three different sources. Refer to Table 6 for examples
for each source.

1. DrugBank: DrugBank is a database for drugs
which provides molecular information about
drugs, their mechanisms, interactions and targets
(Wishart et al., 2018). We use generic and
brand/product names which allows us to collect
tweets discussing treatments, or descriptions of
off-label drug use.

2. MeSH: Medical Subject Headings is a controlled
vocabulary thesaurus used for indexing articles in
PubMed3. We use terms from the subcategories
disease and therapeutics to collect tweets
that address specific diseases and therapeutic
measures. We use all terms that appear with
a frequency >= 1000 in PubMed articles

3https://pubmed.ncbi.nlm.nih.gov/

https://www.snomed.org/
https://pubmed.ncbi.nlm.nih.gov/
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hypothesizing that the distribution of those terms
mirrors the usage on Twitter.

3. Manual: MeSH and DrugBank mostly contain
scientific terms (see Table 6), so we also query
with a manually compiled list of medical terms.
Partly, those relate to 10 medical conditions4.
This is to collect tweets that either use Twitter
specific hashtags, abbreviations, or community-
based terms related to a condition, or mention
terms generally related to the medical domain.

All terms combined result in a list of 22,874 keywords.
From this list, 10,599 terms return results from
Twitter during a test crawl. We remove unproductive
terms and use a final list of 7,358 keywords from
DrugBank, 3,120 from MeSH, and 121 from the
manually compiled list.5 We acknowledge that by
using this approach, we can not sample tweets with
incorrectly spelled mentions of drug or disease names.
We only keep non-duplicate tweets (based on the tweet
ID) which do not contain a URL due to their increased
probability of containing advertisements. Further, we
only keep tweets which contain a relational term.
Examples include words like treats, prescribed, or
diagnosed (and variations thereof). From the resulting
collection of tweets, we draw a sample balanced
across the three keyword sources. We subsequently
annotate 700 tweets per data source (350 per MeSH
subcategory) which amounts in a total of 2,100 tweets.

3.2. Annotation
We label entity and relation classes that allow
us to include individual aspects within people’s
disease-treatment cycles. Classes cover information
concerning developing symptoms, being diagnosed and
offered a treatment, being cured or learning to live with
a medical condition. They allow us to model statements
about how to self-diagnose, treat a particular condition
by themselves, or capture how people perceive risk
factors. For both annotation tasks, we therefore follow
the central paradigm which tells annotators to label
entities and relations the way a tweet’s author intends
or understands them. A mention like UV radiation
could either be intended as an environmental factor
(High UV radiation causes skin cancer.), or a treatment
(UV radiation will help with my low vitamin D levels).

3.2.1. Entity classes
We label seven groups of entities. Each group
contains a respective label or subset of labels which
the annotators use to label the text. We visualize the
entities in Figure 2 and depict which entity-pairs can
be related. Each entity group will be briefly described
in the following section. Table 1 additionally provides

4COVID-19, Alzheimer’s disease, borderline personality
disorder, cancer, depression, irritable bowel syndrome,
measles, multiple sclerosis, post-traumatic stress disorder,
stroke.

5Lists we used to collect and filter the data are available
in the suppl. material together with the corpus.

med. condition

treatments

pathogen biochem.

diagnostics quality-of-life

other

environm. factors

drug
therapy

socio-eco
geo-climate
dietary
habitual
pollution

substance
process

Figure 2: Visualization of entity classes and the
relations between them.

fully annotated examples from the dataset, to which we
will refer to in the following descriptions.

Medical Conditions. All mentions of diseases,
symptoms, side effects, and medical events
or descriptions thereof. See

[
#IBS

MEDC

]
in Ex. 3

or
[
drowsiness

MEDC

]
in Ex. 1. Phrases like[

stopped taking the Lyrica
MEDC

]
in Ex. 2 are considered

relevant medical events, and labeled as medC, too.

Treatments. Mentions of any kind of treatment.
That includes drug names, generic and brand names
(see

[
Prochlorperazine

DRUG

]
and

[
compazine

DRUG

]
in Ex. 1)

and all types of therapy or prevention methods (see[
self isolate

THERAPY

]
in Ex. 6).

Environmental Factors. Entities that influence,
cause or contribute to a medical condition. We
annotate socio-economic (age, gender, ethnicity, social
background etc.), geographic/climatic (geography,
climate, weather etc.), dietary, habitual (exercise, stress
etc.) or pollution-related (air/water pollution, UV or
nuclear radiation) factors. See

[
yoga
HABITUAL

]
in Ex. 2 or[

Alcohol
DIETARY

]
in Ex. 4.

Pathogens. Pathogens are organisms that cause
diseases. This includes mentions of bacteria, fungi,
parasites, or viruses, e.g.,

[
coronavirus

PATHOGEN

]
.

Biochemical Entities. Biochemical substances
such as proteins or hormones (e.g.,

[
Lactose

SUBSTANCE

]
).

The class includes biochemical processes such as
biological, pathogenic or chemical mechanisms (see[
production of adenosine

PROCESS

]
in Ex. 4).

Diagnostics. Mentions of tests or other diagnostic
instruments that are used to diagnose or test for a
medical condition. Refer to

[
test

DIAGNOSTICS

]
in Ex. 6.

Quality of Life Assessments. Descriptions of
patients’ quality of life, i.e. mentions of how a disease
or its management impacts a patient’s well-being. See[
I’m awake just can’t get going

QOL

]
in Ex. 5.
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Other. Relevant entities that can not be covered by
any of the other classes. See

[
Support dogs

OTHER

]
in Ex. 7.

3.2.2. Relation Classes
Each relation is directed and connects two entities (see
Figure 2 for a depiction of which entities can be related
and Table 1 for examples). We annotate the following
entity pairs with relations. (± indicates that a relation
has a positive and negative variant, e.g., (does not)
treat.)
treat→medC ±treats, worsens, ±prevents, ±causes,

contraindicates, prescribed, ±influences
medC→ treat side effect of
env/pathogen/biochem→medC ±causes,

±influences, ±prevents
medC→medC/biochem has symptom, ±causes, is

similar to
treat→ treat ±interaction, is similar to
diag→medC/pathogen ±diagnoses
pathogen→biochem ±causes
medC/treat/env/diag→qol ±causes, ±influences
general type of, other

3.2.3. Evaluation metrics
We measure the agreement between annotations by
calculating the inter-annotator F1. Specifically, we
treat one annotator’s labels as the gold annotations
and consider the other annotator’s labels as predictions
(Hripcsak and Rothschild, 2005).
We report the agreement for varying levels of strictness.
We consider entity span (S) and type (T) as follows:
S1T1 The two spans and types of the entities are

entirely identical.
S0T1 The two spans overlap by min. one token, entity

type is identical.
S0T0 The two spans overlap by min. one token, entity

type is ignored in the comparison.
When evaluating the annotated relation (R) between
two entities, we consider two modes:
R1 Relation type and direction are identical.
R0 Relation type and direction are ignored in the

comparison.
On the entity level, comparing S1T1 to S0T1 shows
to which extend the span of an entity influences the
annotation task. Comparing S0T1 to S0T0 indicates
the impact of assigning a label on the difficulty of the
task.
Analyzing the relation annotation follows the same
objectives with respect to the entities, but adds the
impact of the relation assignment. R1S1T1 is the
strictest evaluation mode. The comparison to both
R1S0T1 and R1S0T0 helps in understanding how the
entity annotation influences the relation annotation
task. R0S0T0 captures the most general level of
agreement indicating how well the annotators can
identify the fact that any two entities are somehow
related. Comparing this to R1S0T0, we can conclude
how difficult it is to identify relation types.

3.2.4. Guideline development & annotator
training

We work with two in-house annotators (A1, A2) to
label the tweets with entities and relations. Both
annotators are female, ages 20 to 25, and 25 to 30,
respectively. Their backgrounds are in linguistics
and computational linguistics. They have no medical
training. We iteratively train the annotators over the
course of three months. In each training iteration, all
annotators label a small set of instances independently
following our annotation guidelines. Subsequently
we discuss each set within the group. In addition,
we calculate the inter-annotator F1 for each round
of training annotations (refer to Section 3.2.3 for an
explanation of the eval. metrics used), and adapt
the guidelines with findings from the discussions and
analysis to clarify the annotation tasks further. The
training instances are not part of the final corpus. The
final version of the guideline document is available in
the supplementary material.
Table 2 shows the development of the inter-annotator
F1 over the training iterations. For each round we
report the macro F1 score across all entity/relation
classes in the different evaluation settings. We find
that the agreement increases for the entities and the
relation annotation over time. The agreement increases
as we allow for less precise matches to be counted
as true positive instances. By the end of the training
period, annotators agreed with .53F1 on exact entity
types and boundaries (S1T1). Comparing the impact
of each subtask in the last round, we observe that
agreeing on the entity type is more challenging than
identifying the entity span (decrease of .25F1 between
S0T0 and S0T1 vs. .02F1 decrease between S0T1 and
S1T1). Evaluating the relation type strictly (R1S0T0
vs. R0S0T0), the agreement drops by .07F1 which
indicates that the relation type is fairly ambiguous, and
therefore hard to agree upon. The strictest evaluation
measures (S1T1, R1S1T1) show that the task remains
challenging even after substantial annotator training
which we attribute to the diverse nature of text in
tweets. Presumably, this is also why the agreement
fluctuates over training rounds.

3.3. Aggregation
We provide an adjudicated version of the dataset
which combines both annotators’ results. In case of
disagreements of entity spans between the annotators,
we choose the longest overlapping sequence between
two instances. We further prefer more frequent
entity and relation classes over less frequent ones,
and choose more general concepts over more specific
ones. Generally, our aggregation strategy is motivated
by a high recall approach to ensure that we lose as
little of the nuances from the individual annotations
as possible. We aggregate in two steps and first align
the entity annotations, followed by aggregating the
relations. Please refer to Section 6 for more details.
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Evaluation mode

Round S1
T

1

S0
T

1

S0
T

0

R
1S

1T
1

R
1S

0T
1

R
1S

0T
0

R
0S

0T
0

1 .44 .66 .73 .18 .4 .4 .4
2 .23 .34 .75 .18 .25 .35 .35
3 .37 .45 .79 .05 .23 .27 .59
4 .64 .76 .95 .44 .48 .51 .68
5 .39 .46 .76 .07 .1 .29 .43
6 .44 .49 .89 .12 .3 .44 .58
7 .62 .68 .96 .4 .4 .44 .47
8 .42 .61 .77 .15 .39 .41 .56
9 .69 .77 .82 .31 .33 .35 .54

10 .53 .55 .8 .28 .4 .59 .66

Table 2: Macro inter-annotator F1 across all entity and
relation classes throughout the training rounds. S1T1
through R0S0T0 indicate the evaluation mode.

S1
T1

S0
T1

S0
T0

R1
S1

T1

R1
S0

T1

R1
S0

T0

R0
S0

T0

Evaluation mode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f1
-s

co
re

sample_source
drug
mesh
manual
full

Figure 3: Inter-annotator macro F1-scores for each
subsample of the corpus (DrugBank (drug), MeSH
(mesh), manually researched keywords (manual)), and
the full dataset (full) across evaluation modes.

4. Analysis
4.1. Agreement Between Annotators
The annotators labeled the final corpus over the course
of four months. Since both sets of annotations
provide unique perspectives on the data, we release
the individual annotations along with an aggregated
version. We evaluate the annotations using the inter-
annotator F1-scores as described in Section 3.2.3 and
provide scores for the full dataset as well as individual
scores for each sampling method in the following.
Figure 3 shows the inter-annotator F1-scores for each
subsample of the corpus evaluated with descending
strictness. For the final corpus we find that annotators
are fairly synchronized in identifying entities in tweets
(.67F1 S0T0). Agreeing on the entity type is more
challenging than identifying the same entity span
(.07F1 decrease between S0T1 and S1T1 vs. .23F1

decrease between S0T0 and S0T1). This is also the

case for the relation agreement. Labeling the relation
type is by far the most difficult task. When we compare
the agreement levels in R0S0T0 with R1S0T0, we
report a difference of .13F1 which showcases how
ambiguous the relations are.
We observe a slight decrease of the agreement
compared to the last training round. We attribute this
to the fact that annotators are continued to be faced
with novel variations of entities and relations because
of Twitter’s diverse nature.

Agreement across sources. Across all evaluation
modes, tweets from the subsample Manual show the
strongest agreement, followed by subsamples MeSH,
and DrugBank. The results indicate that tweets from
the Manual category are easier to annotate than the
other documents, presumably because they mostly use
laypeople’s vocabulary. Due to the nature of the
DrugBank database, tweets from this set might be more
scientific, making them more difficult to annotate.

Agreement across entities. Table 4 reports the inter-
annotator F1-score (iaa) for each entity class (eval.
mode: S1T1). A1 and A2 agree most strongly on
instances of medC and treat drug (.73 and .74 F1,
respectively). We observe the lowest agreement for
mentions of biochem process (.05 F1).
We observe that the agreement for highly frequent
classes is stronger than the agreement in less frequent
ones. Presumably, this is because these classes are also
the most concrete, and therefore easier to detect. Less
frequent classes (e.g., env or qol) could be considered
more abstract or vague. At the same time, we presume
that seeing a certain type of entity more often acts like
a training effect for the annotators.

Agreement across relations. Table 5 reports
the inter-annotator F1-score for each relation class
(evaluation mode: R1S0T06). Across all classes,
we report a macro F1-score of .35. has symptom
and does not prevent are the classes with highest
agreement (.59 F1 respectively), followed by treats (.58
F1), may diagnose and prevents (.56 F1, respectively).
We observe no agreement for is contraindicated,
may not diagnose, and pos/neg interaction.

4.2. Corpus Statistics
The final corpus contains 2,100 tweets with labels for
medical entities and the relations connecting them.
Table 3 lists the number of documents with and without
entities and relations. The majority of documents in
the dataset contain entities. 86.2 % of all documents in
the dataset are labeled with at least one entity. Slightly
more than half of all documents containing entities also
express a relevant relation (56.5 %).
The corpus consists of 93,258 words (17,559 words
are unique). The longest tweet consists of 114 words,
the two shortest tweets are made up of 4 words each

6We choose R1S0T0 to focus specifically on the relation
while allowing a imprecise agreement on the entities.
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Number of documents

no ent with ent no rel with rel

A1 330 (15.7) 1770 (84.3) 835 (47.2) 935 (52.8)
A2 378 (18.0) 1722 (82.0) 833 (48.4) 889 (51.6)

agg 289 (13.8) 1811 (86.2) 788 (43.5) 1023 (56.5)

Table 3: Number of documents with and without
entities (ent) and relations (rel) for both annotators
(A1, A2) and the aggregated dataset (agg). Values
in parenthesis report the respective percentages. For
relations this is w.r.t. all instances which contain
entities.

(see Table 7). A tweet from our corpus has an
average length of 44.41 words. There is no substantial
difference between tweets from different sampling
sources.

The following sections describe our dataset in more
detail. We present corpus statistics regarding the entity
and relation class distribution. Note that we describe
the aggregated version of the dataset.

4.2.1. Entities
Table 4 shows the number of instances per entity class.
We include the statistics for both annotators (A1, A2)
and for the adjudicated dataset. Additionally, we
report the statistics for the whole corpus (full), and
divided by the method the documents were sampled
with (DrugBank, MeSH terms, Manual) .

The dataset contains 6,324 entities. The biggest
entity class is medical conditions (3,553 instances),
followed by mentions of treat drug (1,240). The
remaining entity classes are substantially less frequent.
env pollution has the smallest number of instances (5).
Annotators label approx. 3.01 entities per document.

Entities across sources. Mentions of medical
conditions are more frequent in tweets from the
subsamples MeSH and Manual (1,458 and 1,367,
respectively) than they are the DrugBank sample (728).
Tweets from set DrugBank exhibit the majority of
mentions of treat drug as well as biochem substance
entities (1,035 and 163, respectively). Notably,
mentions of the second treatment-related entity class,
treat therapy, are more frequent in tweets from the
MeSH and Manual sample.

These results confirm that tweets in the DrugBank
sample more frequently discuss treatments, and
therefore exhibit a high number of drug and
biochemical entities. treat therapy captures more
general treatment descriptions than specific mentions
of drugs. Regarding the subsample Manual, we
presume that the high frequency of therapy mentions
indicates that laypeople speak in more general terms
about treatments.

4.2.2. Relations
Table 5 reports the number of annotated relations
for each class. We calculate the statistics for both
annotators (A1, A2) and for the adjudicated data. We
report the numbers of relations for the full corpus as
well as for each of the three subsamples (DrugBank,
MeSH, Manual).
In total, the corpus contains 2,959 relations. The
cause of relation is the most frequent (983), followed
by treats (500), is type of (336), and pos influence
(263). worsens is the class with the lowest frequency
(1 instance). For relations which can be either positive
or negative, the negative relations are always less
frequent. On average, a document in our dataset
contains 1.41 relations.

Relations across sources. While documents from
the subsample DrugBank and MeSH show relatively
equal numbers of total relations (averages of 1,043
and 1,081, respectively), the Manual subsample has
the least amount of relations (av. of 835). cause of
relations are most frequent in the subsamples MeSH
(407) and Manual (331). In the DrugBank set, treats is
the most prevalent relation class (277). Notably, for set
Manual, we find that cause of is by far more frequent
than any other relation. All other classes count (mostly
substantially) less than 100 instances each.

5. Conclusion and Future Work
We introduce and describe BEAR, a corpus of 2,100
medical tweets annotated with a detailed set of
biomedical entities, and the relations connecting them.
Both the entity and relation classes are motivated by
the need to capture fine-grained aspects of patients’
medical journeys. In our annotation study, we show
that tweets hold this type of information, and that non-
expert annotators can detect this reasonably well.
With this dataset, we lay the groundwork to develop
entity and relation extraction systems that give medical
professionals access to patient narratives which are not
covered in scientific texts. This includes quality-of-life
assessments, perception of risk factors, unconventional
treatments, or self-diagnoses that people might feel
uncomfortable or irrelevant to share with their doctors.
Such systems could help answer detailed questions like
”How does chemotherapy affect the social life of breast
cancer patients?” or ”Which habits serve as coping
mechanisms for people suffering from depression?”.
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674 1053 99 1 47 4 1 3 14 23 23 24 139 48 2153 3.08
620 967 84 0 43 2 1 6 13 22 8 19 189 39 2013 2.88

728 1035 114 0 34 2 1 5 7 28 13 6 163 41 2177 3.11

M
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H 1361 151 366 2 42 23 2 8 63 11 40 12 43 45 2169 3.1
1288 108 324 3 18 23 1 20 45 15 25 8 39 58 1975 2.82

1458 128 347 3 36 25 2 19 35 12 27 3 38 43 2176 3.11

M
an
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l 1329 89 254 0 29 30 3 10 36 38 33 4 18 49 1922 2.75

1276 60 226 3 29 27 0 40 41 64 21 14 31 45 1877 2.68

1367 77 234 3 34 21 2 28 30 67 28 7 22 51 1971 2.82

fu
ll

3364 1293 719 3 118 57 6 21 113 72 96 40 200 142 6244 2.97
3184 1135 634 6 90 52 2 66 99 101 54 41 259 142 5865 2.79

3553 1240 695 6 104 48 5 52 72 107 68 16 223 135 6324 3.01

iaa .73 .74 .66 .22 .36 .39 .25 .18 .43 .15 .44 .05 .42 .12 .37

Table 4: Number of annotated entities and inter-annotator F1 (iaa) per entity class. We report the statistics across
the whole corpus (full) as well as divided by the method the documents were sampled with (DB = DrugBank,
MeSH = Medical subject headings, Manual = manually compiled medical keywords). Within each sampling
method we report the statistics for annotator 1 and 2 and for the adjudicated dataset. Reported agreement scores
(iaa, eval. mode S1T1) for all instances across the full corpus.
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M
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iaa .48 .59 .52 .59 .0 .55 .45 .56 .0 .25 .0 .24 .38 .0 .12 .56 .54 .58 .5 .08 .35

Table 5: Number of annotated relations and inter-annotator F1 (iaa) per class. We report the statistics across the
whole corpus (full) as well as divided by the method the documents were sampled with (DB = DrugBank, MeSH
= Medical subject headings, Manual = manually researched medical keywords). Within each sampling method
we report the statistics for annotator 1 and 2 and for the aggregated dataset. Reported agreement scores (iaa, eval.
mode R1S0T0) for all instances across the full corpus.
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S., Möller, S., and Roller, R. (2020). From
witch’s shot to music making bones - resources
for medical laymen to technical language and
vice versa. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 6185–
6192, Marseille, France, May. European Language
Resources Association.

Sousa, D., Lamurias, A., and Couto, F. M., (2021).
Using Neural Networks for Relation Extraction from
Biomedical Literature, pages 289–305. Springer
US, New York, NY.

Stefanidis, A., Vraga, E., Lamprianidis, G.,
Radzikowski, J., Delamater, P. L., Jacobsen,
K. H., Pfoser, D., Croitoru, A., and Crooks, A.
(2017). Zika in twitter: Temporal variations of
locations, actors, and concepts. JMIR Public Health
Surveill, 3(2):e22, Apr.

Sullivan, R., Sarker, A., O’Connor, K., Goodin, A.,
Karlsrud, M., and Gonzalez, G. (2016). Finding
potentially unsafe nutritional supplements from user
reviews with topic modeling. In Biocomputing
2016, pages 528–539, Kohala Coast, Hawaii, USA,
January.

Thorne, C. and Klinger, R. (2017). Towards
confidence estimation for typed protein-protein
relation extraction. In Proceedings of the
Biomedical NLP Workshop associated with RANLP
2017, pages 55–63, Varna, Bulgaria, September.

Uzuner, O., South, B. R., Shen, S., and DuVall,
S. L. (2011). 2010 i2b2/VA challenge on concepts,
assertions, and relations in clinical text. Journal
of the American Medical Informatics Association,
18(5):552–556, 06.

Wang, C. and Fan, J. (2014). Medical relation
extraction with manifold models. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 828–838, Baltimore, Maryland, June.



4449

Association for Computational Linguistics.
Weber, A. M., Gupta, R., Abdalla, S., Cislaghi,

B., Meausoone, V., and Darmstadt, G. L. (2021).
Gender-related data missingness, imbalance and bias
in global health surveys. BMJ global health, 6(11).

Wegrzyn-Wolska, K., Bougueroua, L., and
Dziczkowski, G. (2011). Social media analysis
for e-health and medical purposes. In 2011
International Conference on Computational Aspects
of Social Networks (CASoN), pages 278–283.

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J.,
Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li,
C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu,
Y., Maciejewski, A., Gale, N., Wilson, A., Chin,
L., Cummings, R., Le, D., Pon, A., Knox, C., and
Wilson, M. (2018). DrugBank 5.0: a major update
to the DrugBank database for 2018. Nucleic acids
research, 46:D1074–D1082.

Yang, F.-C., Lee, A. J., and Kuo, S.-C. (2016). Mining
health social media with sentiment analysis. Journal
of Medical Systems, 40(11):236, Sep.

Yin, Z., Fabbri, D., Rosenbloom, S. T., and Malin,
B. (2015). A scalable framework to detect personal
health mentions on Twitter. Journal of Medical
Internet Research, 17(6):e138, 06.

Appendix
Example Terms from the Sampling Methods
Table 6 shows terms from each sampling method.

Source Example terms

DrugBank advil, Benzylamine, Cobalt, S-Acetyl-
Cysteine, Wellbutrin, zzzquil

MeSH Anaphylaxis, Cough, Drainage,
Hospitalization, Neoplasms, Self-Testing

Manual #antivaxxer, #cancersucks,
#depressionisreal, #mswarrior,
#plantbasedhealing, #SocialDistancing

Table 6: Example terms from each sampling method.

Additional Examples from the Corpus
Table 7 shows the shortest and longest tweets in the
dataset.

Annotation Aggregation Strategies
We provide an aggregated version of the dataset which
adjudicates both annotators’ results. In general, our
strategy is motivated by a high recall approach to
ensure we do not lose any annotated perspectives on the
data. When combining the annotations, we choose the
longest overlapping sequence between two instances.
We prefer more frequent entity and relation classes over
less frequent ones, and choose more general concepts
over more specific ones. We aggregate in two steps
by first aligning the entity annotations, followed by
aggregating the relations.

id #words tweet

1 4 bpd symptoms on 1000

2 4
Increasing pain unlocked
#PTSDAwarenessDay

3 114

@username [...] @username I’ve been to
every hospital in my region, ”Sorry, can’t
help you” I don’t want drugs, I want my
back fixed. I know for a fact the tech
is there. They dont́ want the liability.
They should just Quit Medicine! I’m
called inoperable with intractable pain,
none will help. No Pain RX

Table 7: Longest and shortest tweet in the dataset.

Entities With regards to the entity span, we use
the longest overlapping span between A1’s and
A2’s annotation. In cases in which they disagree
on the entity type, we chose the more frequent
class. Exceptions are the entity classes treatment and
biochem. For those classes, one subgroup is more
general than the other. If both annotators agree on the
major class (treat), but disagree on the subtype (drug
vs. therapy) we aggregate to the more general one
which are treat therapy or biochem substance.
For cases in which one annotator labeled an entity
as other while the second annotator chose a different
entity class, we aggregate to the more frequent entity
class. However, if the annotator used other to model a
relation, we keep the entity as other to keep the relation
intact and valid. 7

If one annotator labeled an entity, but the other one
did not, we generally follow a high recall approach and
add this entity to the aggregated document. However,
we additionally check if the annotator who marked the
entity used it to model a relation. If the relation is valid
(i.e. the involved entities are allowed to be connected),
we use the entity, otherwise it is dropped.

Relations To adjudicate the relation annotation, we
identify cases in which both annotators agreed on the
fact that there is any type of relation between a given
entity pair. First, we check if the relation tags are valid
(i.e. the involved entities are allowed to be connected).
If one of them is invalid, we choose the valid one
for the aggregated version. If both are invalid, the
relation is dropped. If they are both valid, we choose
the more frequent relation class. One exception to this
rule concerns cases in which one annotator identified
an other relation while the second annotator chose a
different relation class. Here, the tag other indicates
a vague relation which is not in line with our aim
to adjudicate to the more specific class. Therefore,

7In the guidelines annotators are instructed to prioritize
assigning an accurate relation over an accurate entity type. In
some cases this means they may default to an other entity if
the relation they want to model is not allowed for a particular
entity pair.
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we can not resolve this by simply assigning the more
frequent label, because some of the small relation
classes are less frequent than the class other. A1 and
A2 consequently revisit those cases (11 instances) and
decide jointly which relation type should be added to
the aggregated version.
For annotations in which A1 and A2 only agreed on
one of the involved entities, we follow a high recall
approach and keep both relations for the adjudicated
version of the data as long as the relations are valid.
Finally, we consider cases in which one annotator did
not label any relation while the other identified one. For
those, we hypothesize that they are ambiguous and that
the missing relation reflects that (i.e. that the relation
marked by one of the annotators might be covering
a political claim about a medical topic). In an effort
not to lose these borderline cases, we add them to the
aggregation as long as the relation is valid.


	Introduction
	Related Work
	BioNER on Social Media
	Detection of Medical Relations on Social Media

	Corpus Creation
	Data Collection
	Corpus Subselection

	Annotation
	Entity classes
	Relation Classes
	Evaluation metrics
	Guideline development & annotator training

	Aggregation

	Analysis
	Agreement Between Annotators
	Corpus Statistics
	Entities
	Relations


	Conclusion and Future Work
	Bibliographical References

