
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 458–464
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

458

English Language Spelling Correction as an Information Retrieval Task

Using Wikipedia Search Statistics

Kyle Goslin, Markus Hofmann
TU Dublin – Blanchardstown Campus

Blanchardstown Road North, Dublin 15, Ireland.

kyle.goslin@tudublin.ie, markus.hofmann@tudublin.ie

Abstract

Spelling correction utilities have become commonplace during the writing process, however, many spelling correction utilities suffer
due to the size and quality of dictionaries available to aid correction. Many terms, acronyms, and morphological variations of terms are
often missing, leaving potential spelling errors unidentified and potentially uncorrected. This research describes the implementation of
WikiSpell, a dynamic spelling correction tool that relies on the Wikipedia dataset search API functionality as the sole source of
knowledge to aid misspelled term identification and automatic replacement. Instead of a traditional matching process to select candidate
replacement terms, the replacement process is treated as a natural language information retrieval process harnessing wildcard string
matching and search result statistics.

The aims of this research include: 1) the implementation of a spelling correction algorithm that utilizes the wildcard operators in the
Wikipedia dataset search API, 2) a review of the current spell correction tools and approaches being utilized, and 3) testing and validation
of the developed algorithm against the benchmark spelling correction tool, Hunspell. The key contribution of this research is a robust,
dynamic information retrieval-based spelling correction algorithm that does not require prior training. Results of this research show that
the proposed spelling correction algorithm, WikiSpell, achieved comparable results to an industry-standard spelling correction algorithm,
Hunspell.

Keywords: Spelling correction, Wikipedia, Information Retrieval.

1. Introduction

Spelling correction algorithms have become commonplace
in many day-to-day applications. Although robust, the
downfall of many spelling correction algorithms is the
training set that is required or the annotated data sets for
many algorithms to function (Hládek et al., 2020). To
generate these, manual intervention and labelling is often
required by domain experts (Hagen et al. 2017). The
common spelling correction process can be broken into
three defined steps. The first of these is the error detection
process, where given an input string is validated and
individual misspelled words are identified. The second step
is to generate a candidate list of terms that can be a suitable
replacement for the identified error. The final step in the
process is the ranking of individual candidate terms that can
be used for automatic replacement, where no user
intervention is required, and manual replacement, where a
user is presented with a collection of replacement terms to
choose from.

Brill and Moore (2000) described spelling errors as
belonging to one of two categories: typing errors and
cognitive errors. Gong et al. (2019) defined four common
spelling errors as character insertion, permutation,
replacement, and removal. As a solution to limited
dictionaries and corpora, Wikipedia is an ever-evolving
resource with modifications to articles and the inclusion of
new articles, and the updating of existing articles is a daily
occurrence (Lagunes-García et al., 2020). Previously,
Wikipedia has be harnessed for a number of different
information retrieval tasks such as search query
enhancement (Goslin and Hofmann, 2017), cross-language

1 https://www.mediawiki.org/wiki/API:Search

information retrieval (Cheon and Ko 2021), and question
answering (Chen et al. 2017).

This research describes a novel approach to the automatic
identification of misspelled terms by identifying co-
occurrences in samples retrieved from the Wikipedia
search functionality facilitated by the WikiMedia platform
API.1 Candidate replacement terms are identified through
an information retrieval process based on string patterns
that utilise available wildcard matching.2

In this paper, Section 2 outlines the related work,
describing the variation that exists in spelling errors and the
limitations to approaches that are currently utilised. Section
3 describes the overall methodology followed for this
research. Section 4 describes the implementation of the
proposed algorithm, outlining tuning parameters available
and subsets of data that are available for manipulation
during retrieval. As the process of testing spelling
correction varies between implementations, Section 5
outlines the experimentation setup and procedures
followed during testing. Section 6 outlines and analyses the
results of the testing process. Finally, Section 7 concludes
this research and outlines the key findings after the
implementation of an information retrieval-based spelling
correction algorithm.

2. Related Work

Spelling errors can exist in many forms. Examples of this
include terms that have obvious misspellings (Gupta et al.,
2019), terms that are correct although in the wrong context
(Mays et al., 1999), and phonetic spelling errors that are
typically performed by children (O’Neill et al., 2020).
Spelling correction algorithms are highly dependent on

2 https://en.wikipedia.org/wiki/Help:Searching

459

having a quality source of language specific corpora to
utilize to function correctly, which for less widely used
languages becomes an issue as they often do not exist in a
complete form (Etoori et al., 2018). As a solution to this,
spelling correction algorithms have been created that utilize
dynamic corpora such as Wikipedia for many languages as
the list of correct terms is never complete and always
growing (Beeksma et al., 2018). In addition to this,
grammatical error and correction corpora have also been
generated for spelling correction tasks (Grundkiewicz and
Junczys-Dowmunt, 2018).

There is no current standard approach to spelling
identification and correction, leaving modern approaches to
adopt a variety of implementations including language
models, term co-occurrence statistics, and machine
learning. Pirinen et al. (2014) described an approach based
on weighted finite-states that utilised Wikipedia as a source
of English terms. Their approach showed to be faster than
the Hunspell3 algorithm that is widely used in tools such as
LibreOffice4 and Google Chrome.5 Park et al. (2020)
described Korean spelling correction using the sequence-
to-sequence model. They outline the problem of spelling
issues as similar to that of translating from one language
into another.

Li et al. (2020) described an algorithm that utilizes a
transformer-encoder that encodes spelling information and
global context information in a neural network. Their
solution outperforms the previous state-of-art result by
12.8%. Their approach is designed to not introduce new
tokens and the original structure is retained for future
processing. Haldek et al. (2020) described the issue with
deep neural networks is that they require annotated data
sets that can be expensive to create.

For the proposed algorithm, Wikipedia is used as the sole
source of data. Wikipedia provides a wealth of information
in both the utilization of content and available statistics.
Examples of these content sources include harnessing
pageviews for insights (Vardi et al., 2021), page content for
the estimation of incidents (De Toni et al. 2021), and
utilizing revision history to aid grammatical error
correction (Boyd 2018). Based on these statistics, metrics
can easily be derived including semantic relatedness
measures (Karve et al., 2019), ranking and quality
assessment (Lewoniewski et al. 2019) and semantic
similarity (Hussain et al., 2020). Although Wikipedia has
been used as a source of a priori, but not as a source of
statistics to aid spelling identification and correction as
described in this paper.

There is currently not a standard approach for the testing of
spelling correction algorithms as each utilize different test
sets and result ranking approaches (Hládek etl al., 2020).
Many papers utilise synthetic spelling errors to aid the
testing process (Brill and Moore 2000; Hládek etl al.,
2020). To test the proposed algorithm, a benchmark was
required. A gold standard of spelling correction in the
English language is Hunspell which was used during this
research.

3 http://hunspell.github.io/
4 https://www.libreoffice.org/discover/libreoffice/

3. Methodology

To test both Hunspell and the proposed algorithm, a
synthetic test set of terms was designed to implement
common spelling errors. These errors included the addition
of one or two individual random characters for each term at
any position in the string. These errors were introduced into
the TREC 2009 Million Query Track 20001-60000 data
set6 that contains 2,000 queries of varying length.

This approach provided both an original query as a
reference point and a modified error version of the query
for testing. From this set, queries 20001 – 22001 were
utilised. These queries contain common user queries to a
search engine that include abbreviations, acronyms, and
common phrases on a wide variety of topics. Table 1
describes the number of occurrences for each query length
in the set.

Query length Number of occurrences

1 372

2 762

3 552

4 211

5 80

6 14

>7 10

Table 1: Length of original queries.

For these original queries, 1,050 one letter spelling errors
and 1,911 two letter spelling errors were introduced. Each
error consisted of one random letter between the letters A
and Z. 4,951 individual tokens were under analysis with an
average of 1.67 spelling errors per query. Additional
inserted characters represent the estimation of spelling that
users often make or accidently insert when typing. Two
was chosen as the max number of characters to insert as >2,
the context of the original token can easily be lost. As the
proposed algorithm is experimental, time was not
considered as a factor of success due to the time associated
to the information retrieval process.

3.1 Error Correction Test Statistics

For each query, precision, recall and accuracy were
calculated as shown below:

Precision is defined as: TP / (TP + FP)

Recall is defined as: TP / (TP + FN)

Accuracy is defined as: (TP + TN) / (TP + FP + TN + FN)

TP is defined as the number of words with spelling errors
where the algorithm has given the correct suggestion. FP is
defined as the number of words with or without spelling
errors for which the algorithm made suggestions and they
result is not needed or is incorrect. FN is defined as the
number of words with spelling errors that the algorithm did
not flag as having errors or did not give suggestions. TN is

5 https://www.google.com/intl/en_ie/chrome/
6 https://trec.nist.gov/data/million.query09.html

460

defined as the number of correct words that the algorithm
did not flag as having errors and no suggestions were made.

4. Implementation

This section describes the design and implementation of the
proposed algorithm, WikiSpell, that utilizes the Wikipedia
Search API 7 statistics and text results.

4.1 Source of Candidate Terms

The Wikipedia Search API results are used as a source of
terms related to a single term in the original sequence of
terms under analysis. For any given search result the article
title and snippet were used as sources of terms for a given
article. The summary of text is typically 25 terms. Number
of results to return was set using srlimit=100 parameter to
limit to a max of 100 results. To avoid overfitting of terms,
for any sequence of terms they are tokenized and submitted
separately broadening the results collection.

4.2 Weighting Metrics

In this algorithm, two core metrics for relevance are used.
The first of these is the search result statistics. Given a
string Q, the number of records returned relates to the
number of Wikipedia articles where the string Q was found.
The total hits were returned using srinfo=totalhits API
parameter in the Search API. This statistic was used to:

• Identify that a term has been used before in the
English Wikipedia corpus. This also serves to
show if the spelling is correct as the number will
be higher than those incorrectly spelled in the
English language corpus.

• Identify if a sequence of terms has together been
seen in context where the length of a sequence is
> 1. The more frequent the use, the higher the
chance the sequence is correct.

The hypothesis of this metric is that terms shown in context
together provide an indicator of being semantically correct
and a viable replacement for incorrect term sequences.
Terms that are not frequently shown together would
indicate that terms are semantically not a good fit. In
addition to this, the Levenshtein distance was also used for
small sets of terms to identify if a given term is a good
replacement for a candidate term. For a collection of terms
{T}, the lower the score for a single term Tn indicates that
the term is a closer match.

4.3 Algorithm Implementation

The process of identifying the incorrect spelling of terms
and replacing each with the correct term is performed as a
complete process in the proposed algorithm, not as
individual steps. The algorithm is broken into two distinct
steps: 1) the corpus generation process and, 2) the candidate
generation and selection process. The core algorithm
shown in Algorithm 1 is responsible for triggering this
process. The algorithm takes a sequence of terms to process
shown as S that contains terms t0 to tn separated by spaces.
An arbitrary limit of ten terms per spelling correction run
is applied to allow the algorithm to run in a timely manner.

For each of the individual terms t inside the sequence S, a
call is first made to the generateCorpus() function which

7 https://en.wikipedia.org/w/api.php

takes in the single term t as a parameter. This process is
responsible for generating a collection of wildcard
variations of the original term t with the intent of
broadening the morphological variations of the term. This
is done by passing each variation of the term to the
Wikipedia Search API. The top 100 results returned are
collected and stored as a local corpus that can be searched
for selecting candidate terms.

Once the corpus generation process has completed, a call is
then made to the generateCandidateReplacement() process
which takes a single parameter titled t. This function
utilizes an array of functions to select the best candidate to
replace a misspelled term with based on the local corpus
collected in the previous step.

Algorithm 1: Core process

 S = Original terms (t0 .. tN)
 for each t ∈ S do
 generateCorpus(t)
 generateCandidateReplacements(t)

The first function in the algorithm is the generateCorpus()
function as shown in Algorithm 2, which is passed a single
base term t. The algorithm is responsible for generating
four different permutations of the base term. For each
different character position in the term t between 0 and the
length of t the following operations are performed:

• INSERT - A search wildcard is added which is
represented by a single asterisk.

• INSERT - Two asterisk characters are inserted.
• REPLACE - A single character inside the string is

replaced by a single asterisk.
• REMOVE - A single character is removed from

the original string.

An example of these wildcard string generations for the
term “John” can be seen in Table 2. All generated
variations are prefaced with a single tilde, to encourage the
Wikipedia Search API to output search results instead of
redirecting to a single article related to the search string.

One asterisk inserted.
~*john
~j*ohn
~joh*n
~john*

Two asterisks inserted.
~**john
~j**ohn
~joh**n
~john**

One character removed.
~ohn
~jhn
~jon
~joh

One character replaced.
~*ohn
~j*hn
~jo*n
~joh*

Table 2: Example Wildcard corpus generation output for
input “john”.

In the function, a global array titled generations is created
that is responsible for holding each of the wild card

461

sequences that have been generated from the original term
t. A variable titled currentPos is added that is responsible
for holding the current position in the term t that is currently
being processed. The variable titled wildcard holds a
reference to the set containing the available wildcards to be
entered.

For each individual position in the string t from 0 to n,
where n represents the length of the string, the wildcard
insertion process is performed. This is started by selecting
each wildcard from the set shown as wc. A variable titled
newgen is then created which contains the original string
from position 0 up to the current position is appended,
followed by the character wc, followed by the current
position in the string + 1, to the end of the string shown as
|t|.

This process is then repeated, for the next string titled
newgen. The main difference is the omission of the +1,
leading to an overwriting of an existing string position
value in string t. Finally, from position 0 to curentPos+1 is
appended to the newgen string followed by currentPos+|t|,
removing a single character from the original string in the
process. A single character can only be removed as more
than one can easily loose the context of the original terms.

Algorithm 2: Corpus generation process

Input: t - Individual term from sequence S

function generateCorpus(t)

 global generations = list()

 currentPos = 0

 wildcard = {*, ** }

 for each position in t do

 // Generate wildcards from set incrementally

 for each wc ∈ wildcards do

 // Insert

 newgen = t[0..currentPos] + wc + [currentPos+1..|t|]

 generations.append(“~” + newgen)

 // Replace

 newgen = t[0..currentPos] + wc + [currentPos..|t|]

 generations.append(“~” + newgen)

 // Removing single characters incrementally

 newgen = t[0..curentPos+1] + t[currentPos+2…|t|]

 generations.append(“~” + newgen)

 currentPos++

After the generation process of the sequences has been
completed, the process of generating and selecting possible
candidate replacement terms can be performed. Algorithm
3 outlines the generateCandidateReplacements() function
that takes each single term t from the original term
sequence S and held for later comparisons. Then, for each
of the individual wildcard sequences showed as seq stored
inside the global generations array from the previous
function a call is made to the Wikipedia Search API and the
sequence is passed as the query string. The top 100 search
results returned are stored as {R}. In the search results both
the title of the article and the summary of the abstract are
extracted. The terms are then tokenized and added to the
local array {T}.

Due to wildcards being used during the search process, the
collection of results will have a marginal relevance to the
original search term under consideration. To apply a
relevance filter to the terms, a second loop is used to iterate
over the terms stored in T. For each individual term, the
Levensthtein distance is applied between the original query
term t and the current term tn. Each of the terms and
associated distance scores are appended to the simvals
array. The distances are then stored in descending order.

During analysis the top five terms proved to be the most
relevant to the initial term t. For this reason, a filter is
applied to retain the top 5 terms from the generated
collection of terms and distance scores. For this research
n=5. For each of the retained terms, a query is made to the
Wikipedia Search API and the current term under analysis
is passed. The total number of search results is then
returned. This is used as a metric to identify if the term is
commonly used or not. If the term count is above 500, e.g.,
indicating that it has been used many times, the term is
appended to the finalVals array for future processing. The
results for a given term t are appended to the
resultsPerTerm array at position t.

Once all the terms in the original string have been
processed, a second process is started to generate a
collection of term sequences using the generated terms and
identify the likelihood of the sequence being grammatically
correct. To do this, two different variations are used, one
which is for terms of length 1 and a second that is utilized
for terms greater than 1. These two approaches were
created as short queries of 1 term do not need the Cartesian
product to be generated. For queries of length 1, the
resultsPerTerm array is accessed and the individual term t
is passed as a reference. This returns a collection of terms
and associated weights that are appended to the sequences
array.

For queries with a length greater than 1, the Cartesian
product of all results for terms t0…tn are calculated. All
generated cartesian products are added to the sequences
array. The sequence is then passed to the Wikipedia search
API and the number of results is returned and stored. A
weight by score is then applied to the applied to the results
which are stored in the res array. To select the final terms
to utilize, again two different approaches are utilized. One
for short queries of length 1, which is based on the
Levenshtein distance between the current sequence and the
original term stored in S. For longer queries, the top
weighted sequence is returned.

Algorithm 3: Generate and select replacement

Input: t (Individual term from S)

function generateCandidateReplacements (t)

 resultPerTerm = list()

 for each seq ∈ generations do

 make connection to Wikipedia Search API passing seq

 {R} = Select 100 search results

 {T} = terms from {R}

 simvals = arr()

 for each {T} related to t as tn

 dis = levenshtein(t, tn)

462

 simvals.append(n, dis)

 sortDesc (simvals)

 Select top n terms by weight

 finalVals = arr()

 for term in simvals do

 count = total number of search results for t

 if term > 500:

 finalVals.append(term, count)

 sortByWeightDesc(finalVals)

 resultPerTerm[t] = finalVals

// Generate sequences of possible replacements and score

 sequences = array()

 if length(S) == 1

 for terms in resultPerTerm[t] do

 score = number of search results for t

 sequences.append(terms, score)

 else:

 res = cartsianp(resultPerTerm[A x B x …. N])

 for seq in res:

 score = number of search results for seq

 sequences.append(res, score)

// Final generation of replacements

vals = sortDesc(sequences)

if length(S) == 1

 res = levenshtein(S, vals)

 return lowest(res)

else

 return vals[0] // Return first result e.g. top weighted

The selected top terms are utilized as the replacement for
incorrect terms in the original query Q.

5. Experimentation

The default en_US dictionary8 for Hunspell was utilised for
testing, as used in previous studies. The first replacement
term from the suggested list of terms for an identified
misspelling was utilized. For the proposed algorithm the
number of records during consideration was set to 5, the
number of search results records included (max) = 100 and
the threshold for relevance = 500.

6. Results and Analysis

Table 3 outlines the overall results for 2,000 queries
corrected by both the Hunspell and the proposed algorithm
providing an even baseline for comparison. As the queries
contained a variable number of terms, on the left of the
table, the number of terms added for each query size can be
seen. The most difficult terms to correct are those that do
not contain any context, e.g., single tokens. The proposed
algorithm achieved an average precision of 0.533
compared to 0.386 achieved by Hunspell. Between two and
five terms long, the results of both Hunspell and the
proposed algorithm are comparable. Between six and
greater terms, a visible drop can be seen in the precision for
both algorithms. The proposed algorithm failed for six and

8 https://github.com/elastic/hunspell/tree/master/dicts

above terms, which can be expected as shrinking of the
result set (e.g., Wikipedia articles) occurred during the
information retrieval process that match to all word
sequences in the generated search string. Although the
precision and accuracy greatly improved for the number of
terms added (where n=6), this can be attributed to the
smaller number of queries being run (14) and the shrinking
of the results that can occur for longer string matches. For
this reason, shorter strings have shown to be more effective
when finding replacement terms.

 Hunspell Hunspell WikiSpell WikiSpell

#Terms Precision Accuracy Precision Accuracy

1 0.386 0.386 0.533 0.533

2 0.567 0.674 0.563 0.634

3 0.568 0.710 0.591 0.695

4 0.506 0.689 0.571 0.670

5 0.567 0.736 0.564 0.702

6 0.596 0.761 0.0 0.0

>=7 0.448 0.687 0.0 0.0

Table 3: Precision and accuracy for each different query
length.

In Table 4, the average results for accuracy, precision and
recall can be seen for the entire collection of 2,000 queries.
Both Hunspell and the proposed algorithm have
comparable results.

 Accuracy Precision Recall

Hunspell 0.636 0.527 0.654

WikiSpell 0.631 0.559 0.656

Table 4: Overall average accuracy, precision and recall
from 2,000 results.

6.1 Discussion

During the testing process of the benchmark algorithm
Hunspell, when the max number of synthetic errors were
introduced, e.g., 2 additional characters the algorithm had
an issue identifying the correct replacement. Given the term
toilet represented as toiletzl, the suggested replacement was
toilette. The brand name volvo was represented as volvno
and replaced as volcano. The process of appending
synthetic errors for the company name yahoo which was
shown as yahoogc was correctly replaced as yahoo.
Incorrect replacements were often seen when no error was
present such as the term michworks being replaced with
patchworks. A lack of terms in the corpus of Hunspell can
be easily seen for brand names such as US airways which
was represented as usairwaymi and corrected as stairway.

For the website, titled digg, which no error was introduced,
it was corrected as dig, outlining that it did not have
knowledge about current brand or service names. Larger
queries such as blount county sheriff department was
corrected as bluepoint county sheriff department which is
quite a close match. The larger the number of additional
characters added to create an error, the more difficulty the
algorithm had. When spaces where missing, the algorithm

463

functioned well to replace it which was be seen with the
query flashyour which was replaced with flash your.

The insertion process was also successful for the name club
pengi which was replaced with club penguin. Other cases
of estimation can be seen with the query Keflex for animals
which was replaced with reflex for animals. The algorithm
did not seem to notice that the spelling, Keflex, was in fact
correct. The same can be seen for supermeds which no error
was introduced but replaced with supermen.

For the proposed algorithm WikiSpell, obama family tree
represented as obama frvamily trdee corrected as obama
family tree. This outlined that even when two thirds of a
query were incorrect, the algorithm still performed well.
The single term toilet described earlier represented as
toiletzl was corrected as toilet successfully. The name
Euclid was modified as euclidxf and corrected as Euclid.
As estimation can be seen with the original query gmat prep
classes that was modified as gmfat alprep classes and
finally corrected as fat are classes. This shows the danger
that a single character in an acronym can easily change the
entire meaning of an original meaning.

Two characters appended to the acronym djs was
represented as djsjv and corrected as djs showing that terms
appended to the end of a query pose less of an issue for the
algorithm. The four term query orange county convention
center was modified as dorange county convention centjrer
and correctly fixed as orange county convention center.
The three terms video game artist was modified as vidnoeo
gamesv azvrtist and finally completely corrected as video
game artists. With very little terms close to the name kodak
when it was represented as kopdak it was successfully
replaced as kodak.

During the retrieval process of Wikipedia data for the
proposed algorithm, individual terms were used as the basis
for generation even when more than one term was in the
original query. This proved to be the most acceptable
approach as more than one token routinely returned small
collections of results causing the algorithm to prematurely
fail. Utilisation of search statistics and content have shown
to be a robust solution to replace hand-crafted dictionary
corpora as often content and statistics were available. A
strong advantage of the proposed algorithm was the
harnessing of context available from the source data for
sequence validation which many current spelling
correction algorithms lack.

Due to the vast quantity of available English data, rare
terms were often seen in valid sequences of terms that
would not be correct if typical grammatical rules were
applied. A core advantage is the availability to correct
terms that have recently been added to Wikipedia and the
English language which traditionally would be missed from
existing corpora.

7. Conclusion

This research proposed the WikiSpell algorithm for the
automatic detection and correction of spelling errors in a
sequence of terms. Results from this research have shown
that the Wikipedia Search API has shown to be effective as
a source of candidate terms for spelling correction due to

9 https://github.com/Kylegoslin/wikispell

the variety of topics covered in the English Wikipedia. The
utilization of Wikipedia English corpus search statistics
such as the number of search results as a source for
identifying term sequences has shown to be useful for
spelling error identification and replacement.

The algorithm proposed in this research, WikiSpell, has
shown comparable results to the Hunspell algorithm when
used for automatic spelling identification and correction.
When working with short sequences of terms, an IR based
approach to spelling correction was highly successful due
to the dependency on context.

The same code and dataset for this project is avilable on
GitHub.9

7.1 Future work

To further aid the proposed algorithm, additional focus on
the term selection process where a candidate is selected
from a small group of terms (n=5) could be enhanced by
replacing this with a more dynamic value depending on the
collection size and the number of terms under consideration
before final selection.

8. Biblographical References

Hládek, D., Staš, J. and Pleva, M. (2020) Survey of
Automatic Spelling Correction. Electronics. 9(10):
1670. https://doi.org/10.3390/electronics9101670.

Hagen, M., Potthast, M., Gohsen, M., Rathgeber, A., &
Stein, B. (2017) A large-scale query spelling correction
corpus. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pp. 1261–1264.

Brill, E. and Moore, R.C. (2000) An improved error model
for noisy channel spelling correction. In Proceedings of
the 38th annual meeting of the association for
computational linguistics, pp. 286-293.

Gong, H., Li, Y., Bhat, S. and Viswanath, P. (2019)
Context-sensitive malicious spelling error correction. In:
The World Wide Web Conference Proceedings, pp. 2771-
2777.

Lagunes-García, G., Rodríguez-González, A., Prieto-
Santamaría, L., del Valle, E.P.G., Zanin, M. and
Menasalvas-Ruiz, E. (2020) How Wikipedia disease
information evolve over time? An analysis of disease-
based articles changes. Information Processing &
Management. 57(3): 102225.

Goslin, K. and Hofmann, M. (2018) A Wikipedia powered
state-based approach to automatic search query
enhancement. Information Processing & Management.
54(4):726-739.

464

Cheon, J. and Ko, Y. (2021) Parallel sentence extraction to
improve cross-language information retrieval from
Wikipedia. Journal of Information Science, 47(2): 281-
293.

Chen, D., Fisch, A., Weston, J. and Bordes, A. (2017)
Reading Wikipedia to answer open-domain questions.
Computing Research Repository.

Gupta, J., Qin, Z., Bendersky, M. and Metzler, D. (2019)
Personalized online spell correction for personal search.
In The World Wide Web Conference, pp. 2785-2791.

Mays, E., Damerau, F.J. and Mercer, R.L. (1999) Context
based spelling correction. Information Processing &
Management, 27(5):517-522.

O’Neill, E., Young, R., Thiaville, E., MacCarthy, M.,
Carson-Berndsen, J. and Ventresque, A. (2020) S-
Capade: Spelling Correction Aimed at Particularly
Deviant Errors. In International Conference on
Statistical Language and Speech Processing. pp. 85-96.

Etoori, P., Chinnakotla, M. and Mamidi, R. (2018)
Automatic spelling correction for resource-scarce
languages using deep learning. In Proceedings of ACL
Conference 2018. Student Research Workshop, pp. 146-
152.

Beeksma, M., Van Gompel, M., Kunneman, F., Onrust, L.,
Regnerus, B., Vinke, D., Brito, E., Bauckhage, C. and
Sifa, R. (2018) Detecting and correcting spelling errors
in high-quality Dutch Wikipedia text. Computational
Linguistics in the Netherlands Journal. 8:122-137.

Grundkiewicz, R. and Junczys-Dowmunt, M. (2014) The
wiked error corpus: A corpus of corrective Wikipedia
edits and its application to grammatical error correction.
In International Conference on Natural Language
Processing, pp. 478-490.

Pirinen, T.A. and Lindén, K. (2014) State-of-the-art in
weighted finite-state spell-checking. In Proceedings of
the International Conference on Intelligent Text
Processing and Computational Linguistics, Berlin,
Heidelberg.

 Park, C., Kim, K., Yang, Y., Kang, M. and Lim, H. (2020)
Neural spelling correction: translating incorrect
sentences to correct sentences for multimedia.
Multimedia Tools and Applications, pp.1-18.

 Li, X., Liu, H. and Huang, L. (2020) Context-aware Stand-
alone Neural Spelling Correction. In arXiv preprint.

Hládek, D., Staš, J. and Pleva, M. (2020) Survey of
Automatic Spelling Correction. Electronics. 9(10),
1670. https://doi.org/10.3390/electronics9101670.

Vardi, E., Muchnik, L., Conway, A. and Breakstone, M.
(2021) WikiShark: An Online Tool for Analyzing
Wikipedia Traffic and Trends. In Companion
Proceedings of the Web Conference.

De Toni, G., Consonni, C. and Montresor, A. (2021) A
general method for estimating the prevalence of
influenza-like-symptoms with Wikipedia data. PloS.
16(8).

Boyd, A. (2018) Using Wikipedia edits in low resource
grammatical error correction. In Proceedings of the 2018
EMNLP Workshop W-NUT: The 4th Workshop on Noisy
User-generated Text.

Karve, S., Shende, V. and Hople, S. (2019) Semantic
Relatedness Measurement from Wikipedia and WordNet
Using Modified Normalized Google Distance. In Data
Analytics and Learning.

Lewoniewski, W., Węcel, K. and Abramowicz, W. (2019)
Multilingual ranking of Wikipedia articles with quality
and popularity assessment in different topics. Computers.
8(3):60.

Hussain, M.J., Wasti, S.H., Huang, G., Wei, L., Jiang, Y.
and Tang, Y. (2020) An approach for measuring
semantic similarity between Wikipedia concepts using
multiple inheritances. Information Processing &
Management. 57(3): 102188.

