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Abstract
Hypernymy plays a fundamental role in many AI tasks like taxonomy learning, ontology learning, etc. This has motivated the
development of many automatic identification methods for extracting this relation, most of which rely on word distribution. We
present a novel model HyperBox to learn box embeddings for hypernym discovery. Given an input term, HyperBox retrieves
its suitable hypernym from a target corpus. For this task, we use the dataset published for SemEval 2018 Shared Task on
Hypernym Discovery. We compare the performance of our model on two specific domains of knowledge: medical and music.
Experimentally, we show that our model outperforms existing methods on the majority of the evaluation metrics. Moreover,
our model generalize well over unseen hypernymy pairs using only a small set of training data.
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1. Introduction
In linguistics, hypernymy is a semantic relation be-
tween a hypernym denoting a superordinate and a hy-
ponym denoting a subordinate. Hypernymy is a major
semantic relation and a vital organization principle of
semantic memory (Miller and Fellbaum, 1991). It is an
asymmetric relation between a hypernym (supertype)
and a hyponym (subtype), as in animal-dog and sport-
tennis. Figure 1 shows some examples of a hypernym
class along with some of their hyponyms. As we can
see from Figure 1, hypernyms are a more general class
of hyponym terms. It plays a crucial role in language
understanding because it enables generalization, which
lies at the core of human cognition. Therefore, it has
been an active area of research in NLP for decades.
Automatic hypernym discovery is useful in many tasks
like taxonomy creation (Snow et al., 2006; Navigli et
al., 2011), recognizing textual entailment (Dagan et
al., 2013), and text generation (Biran and McKeown,
2013).

In this paper, we tackle the problem of hypernym dis-
covery (Espinosa-Anke et al., 2016) instead of hyper-
nym detection (Shwartz et al., 2017). Generally, eval-
uation benchmarks for modeling hypernymy are such
that they are reduced to a binary classification task
where one tries to predict if a hypernymy relation ex-
ists between candidate pairs. Hypernym detection uses
this experimental setting and tends to suffer from lexi-
cal memorization phenomena (Levy et al., 2015) due to
the inherent modeling of the datasets by supervised sys-
tems. Thus, to alleviate this problem (Espinosa-Anke et
al., 2016) proposed to frame the problem as Hypernym
Discovery i.e given a query term and search space of
domain vocabulary, discover the best candidate hyper-
nyms of input hyponym. This reformulation not only
helps in alleviating the issues discussed above but also

Figure 1: Examples of Hypernym-Hyponym pairs

helps to use it with other downstream applications such
as semantic search, query understanding etc. Motivated
by this, the organizers of SemEval Task9 published a
full-fledged benchmarking dataset (Camacho-Collados
et al., 2018) for the novel task of hypernym discovery,
which covered multiple languages and knowledge do-
mains. In this paper, we test our hypothesis on a corpus
of the English language in two domains: Music and
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Medical.
Two families of approaches to identify and discrimi-
nate hypernyms are prominent in Hypernym Discovery.
Pattern-based approaches for relation extraction have
been discussed for a while in the literature and are used
to discover a variety of relations including general hy-
pernymy relation. The pattern-based approach (Hearst,
1992; Navigli and Velardi, 2010; Pavlick and Pasca,
2017) to discover hypernymy was pioneered by Hearst
(Hearst, 1992) where the author defined certain lexico-
syntactic patterns (e.g X such as Y) to discover hyper-
nymy relations between pairs from corpora. Hearst in-
troduced many such patterns in the paper for hypernym
discovery. But generally, these approaches suffer from
low recall as the inherent assumption is that both hy-
pernym hyponym pairs co-occur in a pattern. This is
often not the case and leads to reduced recall.
The second line of approaches uses supervised tech-
niques and distributional models (Sanchez and Riedel,
2017; Weeds et al., 2014; Santus et al., 2014) for
the task of hypernym discovery. The general idea
is to learn a function that takes as input the word
embeddings of a query q and a candidate hypernym h
and outputs the likelihood that there is a hypernymy
relationship between q and h or outputs a distance in
the embedding space between q and h. This decision
function is learned in a supervised fashion using exam-
ples of pairs of words that are related by hypernymy
and pairs that are not.

In this work, we consider the task of discovering
hypernyms from large text corpora in a supervised
way. We use the recently introduced Box Embeddings
(Abboud et al., 2020) to discover hypernyms from
a text corpus. (Abboud et al., 2020) proposed a
spatio-translational embedding model, called BoxE
that embeds entities as points, and relations as a
set of hyper-rectangles (or boxes), which spatially
characterize basic logical properties. Our approach
is also based on Box embeddings. We show that
our method HyperBox experimentally outperforms
existing methods for hypernym discovery on most
of the evaluation metrics. Our contributions are as
follows:

• We introduce Box embeddings for hypernym dis-
covery. To the best of our knowledge, this is the
first model of its kind for hypernym discovery.

• Through extensive experiments on real-world
datasets, we establish HyperBox’s effectiveness in
discovering Hypernyms.

2. Related Work
Hypernym Detection and Discovery: Traditionally,
discovering hypernymic relations from text corpora has
been addressed using both unsupervised and super-
vised approaches. The pattern-based approach is a pop-
ular unsupervised approach that uses lexico-syntactic

patterns to discover hypernyms from text corpora.
Hearst in her paper (Hearst, 1992) defined many such
patterns for extracting hypernym relation. These high-
precision patterns can also be learned automatically.
However, it is well understood that the pattern-based
approaches suffer significantly from missing hypernym
extraction as terms must occur in exactly the right con-
figuration to be detected.
Conversely, distributional approaches rely on a distri-
butional representation for each observed word and are
capable of discovering hypernymic relations between
words even when they do not occur together explicitly
in the text. Moreover, distributional approaches pro-
vide rich representations of lexical meaning. A variety
of distributional methods for unsupervised hypernymy
detection have been proposed (Weeds and Weir, 2003;
Lenci and Benotto, 2012; Chang et al., 2018; Weeds
et al., 2004) all rely on some variation of the distribu-
tional inclusion hypothesis: If x is a semantically nar-
rower term than y, then a significant number of salient
distributional features of x is expected to be included
in the feature vector of y as well. Moreover, (Santus et
al., 2014) proposed the distributional informativeness
hypothesis i.e hypernyms tend to be less informative
than hyponyms, and that they occur in more general
contexts than their hyponyms.
Most of the recent work on the subject is however
supervised and is based on using word embeddings as
input for classification or prediction (Fu et al., 2014;
Espinosa-Anke et al., 2016; Sanchez and Riedel, 2017;
Baroni et al., 2012; Nguyen et al., 2017). (Shwartz et
al., 2016) showed that pattern-based and distributional
evidence can be effectively combined within a neural
architecture.

Embeddings: Our approach is based on em-
beddings. (Yu et al., 2015) proposed a dynamic
distance-margin model to learn term embeddings
that capture properties of hypernymy. The model is
trained on the pre-extracted taxonomic relation data
and the resulting term embeddings are fed to an SVM
classifier to predict hypernymy relation. However, one
of the major drawbacks of this model is that they learn
term pairs without considering their contexts, leading
to a lack of generalization for term embeddings.
Order-embeddings (Vendrov et al., 2016) represent
text and images with embeddings where the ordering
over individual dimensions forms a partially ordered
set.
Hyperbolic embeddings represent words in hyperbolic
manifolds such as the Poincare ball and may be viewed
as a continuous analogue to tree-like structures (Nickel
and Kiela, 2017; Nickel and Kiela, 2018). But these
graph-based methods generally require supervision of
hierarchical structure, and cannot learn taxonomies us-
ing only unstructured noisy data. (Luu et al., 2016) in-
troduced a dynamic weighting neural network to learn
term embeddings that encode information about hyper-
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Figure 2: An example HyperBox model for three words w1, w2, w3 in R2 for hypernymy pairs h(w2, w3),
h(w2, w1) and h(w1, w3). The hypernymy relation is encoded by box embeddings h(1) and h(2). Every word
wi has an embedding wi, and bi which defines a bump on other words, as shown with distinct colors.

nymy and their contexts, considering all terms between
a hyponym and its hypernym in a sentence. The pro-
posed model is trained on a set of hypernym relations
extracted from WordNet (Miller, 1995). The embed-
dings are fed as features to an SVM classifier to de-
tect hypernymy but the method still is not able to de-
termine the directionality of a hypernym pair. (Vilnis
et al., 2018; Li et al., 2019) proposed construction of a
novel box lattice and accompanying probability mea-
sure to capture anticorrelation and disjoint concepts.
(Abboud et al., 2020) introduced BoxE, a Box em-
beddings model that embeds entities as points, and re-
lations as a set of hyper-rectangles (or boxes), which
spatially characterize basic logical properties. Our ap-
proach is also based on Box embeddings.

3. HyperBox: Proposed Method

In this section, we present our model for hypernym dis-
covery, HyperBox. The general idea is to learn a func-
tion that takes as input the word embeddings of a query
q and a candidate hypernym h and outputs the score
that there is a hypernymy relationship between q and
h. To discover hypernyms for a given query q (rather
than classify a given pair of words), we apply this deci-
sion function to all candidate hypernyms and select the
most likely candidates. In this section, we start with
the description of the HyperBox model. After this, we
describe the distance function and the training objec-
tive used to train our HyperBox model for hypernym
discovery. The code for HyperBox can be found at
https://github.com/maulikres/HyperBox.

3.1. Hypernym Discovery using HyperBox
In this subsection, we describe HyperBox, an embed-
ding model that encodes hypernym relation as axis-
aligned hyper-rectangles (or boxes) and words as points
in the d-dimensional Euclidean space.
Consider a vocabulary obtained from a corpus, which
consists of a finite set E of words. Given a word wi and
word embedding dimension m, the model retrieves its
embedding ei ∈ Rm using a lookup table. These em-
beddings were learned beforehand on a large unlabeled
text corpus. In HyperBox, every word wi ∈ E is repre-
sented by two vectors wi, bi ∈Rd in the d-dimensional
Euclidean space, where wi defines the base position
of word, and bi defines its translational bump, which
translates all the words co-occuring in a hypernymy re-
lation with wi, from their base positions to their final
embeddings by “bumping” them. We define base pro-
jection matrix ϕbase ∈ Rd×m and bump projection ma-
trix ϕbump ∈ Rd×m to obtain base position and trans-
lational bump for each word. The base position and
translational bump of each word is obtained by pro-
jecting initial word embeddings using two matrix ϕbase

and ϕbump as follows:

wi = ϕbase · ei (1)

bi = ϕbump · ei (2)

The final embedding of a word wi relative to a hyper-
nym pair h(wi, wj) is hence given by:

wi
h(wi,wj) = (wi + bj) (3)

https://github.com/maulikres/HyperBox
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Term Hypernym(s) Source
Medical pulmonary embolism pulmonary artery

finding, trunk arterial
embolus, embolism

SnomedCT

Music Green Day artist, rock band,
band

MusicBrainz

Table 1: Some example hyponym terms and hypernyms extracted from different sources for both domain

wj
h(wi,wj) = (wj + bi) (4)

Essentially, the word representation is dynamic, as ev-
ery word can have a potentially different final embed-
ding relative to a different hypernym pair. The main
idea is that every word translates the base positions of
other word co-appearing in a pair, that is, for a hyper-
nym pair h(w1, w2), b1 and b2 translate w2 and w1

respectively, to compute their final embeddings.
In HyperBox, hypernym relation h is represented by 2
hyper-rectangles, i.e., boxes, h(1),h(2) ∈ Rd. Intu-
itively, this representation defines two regions in Rd,
one for hyponym and other for hypernym, such that a
fact h(wi, wj) holds when the final embeddings of wi

and wj each appear in their corresponding position box.
An example HyperBox model is shown in Figure 2 for
d=2. Consider three words w1, w2, w3 which are rep-
resented as a point, and a hypernymy relation is repre-
sented with two boxes h(1) and h(2). Every word is
translated by the bump embeddings of all other words.
For example, h(w2, w3) is a true hypernym-hyponym
pair in the model, since (i) w2

h(w2,w3) = (w2 + b3)
is a point in h(1) (w2 appears in the head box), and
(ii) w3

h(w2,w3) = (w3 + b2) is a point in h(2) (w3

appears in the tail box). Similarly, h(w1, w3) is a true
hypernym-hyponym pair in the model.

3.2. Scoring Function
We use the scoring function introduced by (Abboud et
al., 2020). They define a distance function for eval-
uating entity positions relative to box positions such
that the distance function grows slowly if a point lies
inside a box (relative to the center of the box), but
grows rapidly if the point is outside the box. This
drive points more effectively into their target boxes
and ensure they are minimally changed and can re-
main there once inside. Formally, let u(i), l(i) ∈ Rd

be the upper and lower boundaries of a box h(i), re-
spectively. Let c(i) = (u(i) + l(i))/2 its center and
ω(i) = (u(i) − l(i) + 1) its width incremented by 1. A
point wi is inside a box h(i) if l(i) ≤ wi ≤ u(i). The
distance function for the given word embeddings rela-
tive to a given target box is defined as follows:

dist(wi
h(w1,w2),h(i)) ={

|wi
h(w1,w2) − c(i)| ⊘ ω(i) ifwi ∈ h(i)

|wi
h(w1,w2) − c(i)| ◦ ω(i) − κ otherwise

(5)

where κ = 0.5 ◦ (ω(i) − 1) ◦ (ω(i) − ω(i)◦−1

), is a
width-dependent factor, ◦ is element wise multiplica-
tion, ◦ − 1 is element-wise inversion and ⊘ is element
wise division.
The distance function, dist factors in the size of the
target box in its computation for both the above cases.
In the first case, when the point is in its target box,
distance inversely correlates with box size, to main-
tain low distance inside large boxes and provide a gra-
dient to keep points inside. In the second case, box
size linearly correlates with distance, to penalize points
outside larger boxes more severely. Moreover, κ is
subtracted to preserve function continuity. More de-
tails about this distance function can be found out in
(Abboud et al., 2020). Finally, the scoring function
is defined as the sum of the L-2 norms of dist be-
tween both hyponym-hypernym pair and their respec-
tive boxes, i.e.:

score(h(w1, w2)) =

2∑
i=1

||dist(wi
h(w1,w2),h(i))||2

(6)

3.3. Training Objective
Our next goal is to learn base and bump embeddings
for each word as well as projection matrix and box
embedding for both boxes. Given a training set of
queries and their output, we optimize a negative sam-
pling loss (Mikolov et al., 2013) to effectively optimize
a distance-based model (Sun et al., 2019):

L = −logσ(γ−dist(v; q))−
k∑

i=1

(1/k)logσ(dist(v́i; q)−γ)

(7)

where γ represents a fixed scalar margin, v ∈ [[q]] is
a positive entity (i.e., answer to the query q), and v́i /∈
[[q]] is the i-th negative entity (non-answer to the query
q) and k is the number of negative samples.

4. Experiments
4.1. Datasets
We use the SemEval-2018 Task9-Hypernym Discov-
ery dataset (Camacho-Collados et al., 2018) for our
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Split Music Medical

Trial/Validation 15 15
Training 500 500

Test 500 500

Table 2: Number of terms (hyponyms) for each dataset
in trial, training and test sets.

experiments. We use two datasets in the English lan-
guage corresponding to two specific domains of med-
ical and music. Some example input-output pairs (i.e.
hyponym terms and corresponding hypernym lists) are
shown in Table 1 for both datasets. Table 1 also reports
the sources of hypernymy information beside each pair,
which vary depending on the dataset.
Statistics of the two datasets used in the experiments of
this paper are summarized in Table 2. The dataset was
split equally in the training and testing set, while the
trial data provided fewer examples and is to be used
as a validation set. It should be noted that each term
may be associated with one or (in most cases) more
than one hypernym. Therefore, the effective number of
hyponym-hypernym pairs for both datasets would be
high. For example, the number of hyponym-hypernym
pairs in the test gold standard is 4,116 for the medical
dataset and 5,233 for the music dataset.

4.2. Evaluation Metrics
To compare the performance of our model with existing
models on the SemEval-2018 Task9 dataset (Camacho-
Collados et al., 2018), we also use the same set of met-
rics provided by the organizer of SemEval-2018 Task9.
The hypernym discovery task is evaluated as a soft
ranking problem. Models were evaluated over the top
15 (at most) hypernyms retrieved for each input term,
and their performance was assessed through Informa-
tion Retrieval metrics.

• Mean Reciprocal Rank (MRR) : For a single
query, reciprocal rank is 1/rank where rank is the
position of the first correct result in a ranked list
of outcomes. For multiple queries Q, the MRR is
defined as follows:

MRR =
1

|Q|

|Q|∑
i=1

1/ranki (8)

• Mean Average Precision (MAP): MAP is a
widely used metric to measure the performance of
models in information retrieval. It is defined as:

MAP =
1

|Q|
∑
q∈Q

AP (q) (9)

where Q is the number of queries or experimen-
tal runs, AP(·) refers to average precision, i.e. an
average of the correctness of each individual ob-
tained hypernym from the search space.

• Precision@k (P@k): In addition to MRR and
MAP, P@k is used which is defined as the number
of correctly retrieved hypernyms at various thresh-
olds (k=1,3,5,15, etc).

P@k =
truepositives@k

(truepositives@k) + (falsepositives@k)
(10)

4.3. Experimental Setup
Training for the HyperBox model was conducted on
an Intel Xeon CPU with 16 cores and 224 GB RAM.
We run HyperBox on both the medical and music
dataset. Initially, we train our word embeddings on
a given raw corpus with an embedding dimension of
300. We use the same raw corpora that were provided
by the organizers for the SemEval2018 Task9. For
the medical dataset, a combination of abstracts and
research papers provided by the MEDLINE (Medical
Literature Analysis and Retrieval System) repository,
which contains academic documents such as scientific
publications and paper abstracts, is used. For the
music domain, the raw corpus is a concatenation of
several music-specific corpora, i.e., music biographies
from Last.fm contained in ELMD 2.0 (Oramas et
al., 2016), the music branch from Wikipedia, and
a corpus of album customer reviews from Ama-
zon (Oramas et al., 2017). The raw corpora along
with training and test data can be downloaded from
https://competitions.codalab.org/competitions/17119.
HyperBox is trained using the Adam optimizer, to op-
timize negative sampling loss. Hyperparameter tuning
was conducted over its learning rate, loss margin γ, di-
mensionality d, and the number of negative examples.
We only report final hyperparameter values after hy-
perparameter tuning. We used an embedding size of
300 for both base and bump embeddings, and also for
hypernym boxes (center and offset). Based on the per-
formance on the validation set, we use a learning rate
of 0.001, no of negative samples equal to 100, and γ
(margin in negative sampling loss) equal to 2.

5. Results
A summary of the results is provided in Tables 3 and
4. We compare the performance of our model with
the benchmark methods and models of the team partic-
ipating in the SemEval 2018 Task9. It is worth noting
that we don’t use hyperbolic embeddings for compari-
son. Hyperbolic embeddings (Nickel and Kiela, 2017;
Nickel and Kiela, 2018) have been shown to perform
well in learning the hierarchical structure as observed
in trees. But, to use hyperbolic embeddings we need a
graph-structured dataset instead of the raw corpus. (Le
et al., 2019) use Hearst Graphs to create such graph-
like structure from the raw corpus. But for the given
dataset, such a graph will be very sparse with many dis-
connected components. So in this work, we skip com-
parison with models using hyperbolic embeddings.
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Model MRR MAP P@5

Hypernyms under Siege (Shwartz et al., 2017) 5.01 1.95 2.15
Adapt (Maldonado and Klubička, 2018) 7.46 2.63 2.64
SJTU (Zhang et al., 2018) 9.15 4.71 4.91
vTE (Espinosa-Anke et al., 2016) 39.36 12.99 12.41
300-sparsans (Berend et al., 2018) 46.43 29.54 28.86
CRIM Supervised (Bernier-Colborne and Barrière, 2018) 57.34 39.95 43.00
HyperBox(Our) 58.15 41.39 43.13

Table 3: Results on the Music dataset

Model MRR MAP P@5

Hypernyms under Siege (Shwartz et al., 2017) 2.10 0.91 1.08
Adapt (Maldonado and Klubička, 2018) 20.56 8.13 8.32
SJTU (Zhang et al., 2018) 25.95 11.69 11.69
vTE (Espinosa-Anke et al., 2016) 41.07 18.84 20.71
300-sparsans (Berend et al., 2018) 40.60 20.75 21.43
CRIM supervised (Bernier-Colborne and Barrière, 2018) 37.63 28.51 25.63
HyperBox(Our) 43.71 27.79 30.22

Table 4: Results on the Medical dataset

The Adapt team (Maldonado and Klubička, 2018) uses
skip-gram word embeddings for hypernym discovery.
They use the traditional word2vec similarity function
to discover hypernym from a raw corpus. The SJTU
team (Zhang et al., 2018) uses neural term embeddings
for hypernym discovery. They use different neural net-
works like LSTM, CNN, GRU to learn term embed-
dings to discover hypernym from a raw corpus. The
vTe team uses a supervised distributional framework
for hypernym discovery which operates at the sense
level, by exploiting semantic regularities between hy-
ponyms and hypernyms in embeddings spaces and inte-
grating a domain clustering algorithm (Espinosa-Anke
et al., 2016). The 300-sparsans (Berend et al., 2018)
team uses a system based on sparse coding and a formal
concept hierarchy obtained from word embeddings.
The CRIM team (Bernier-Colborne and Barrière, 2018)
uses a hybrid approach by combining methods based
on unsupervised Hearst patterns and supervised projec-
tion learning. We use the supervised model of CRIM
(Bernier-Colborne and Barrière, 2018) for a fair com-
parison with all the existing models. Most of these
models use symmetric similarity functions. As a re-
sult of this, even if we interchange hyponym-hypernym
pairs their symmetric similarity function will output the
same score which is undesirable. Unlike this, Hyper-
Box doesn’t face such a problem because it uses a Box
structure and order.

We can see from Tables 3 and 4 that our method Hy-
perBox outperforms all existing benchmark models on
most of the metrics. The SOTA results are bolded in the
table. This is because our HyperBox model is able to
learn the anti-symmetric and hierarchical relation ”hy-
pernymy” very well. (Abboud et al., 2020) showed that
the Box embedding model is fully expressive, and is ca-

pable of learning symmetry, anti-symmetry, inversion,
composition, hierarchy, intersection, and mutual exclu-
sion.

6. Conclusion
HyperBox provides an effective way for solving the
problem of Hypernym discovery. Unlike the Hyper-
nym detection task which reduces to a binary classifi-
cation task, hypernym discovery focuses on retrieving
hypernyms from a large text corpus. HyperBox encodes
words as points and hypernym relation as axis-aligned
hyper-rectangles (or boxes) in the d-dimensional eu-
clidean space. Moreover, Box embeddings have been
shown to learn antisymmetric and hierarchical relations
very well due to their distinctive box structure.
As part of future work, we hope to combine HyperBox
with existing unsupervised approaches like Hearst pat-
terns to form a hybrid approach to solve the problem of
hypernym discovery.
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