
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6104–6113
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6104

Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing

Zhaoxin Luo, Michael Zhu
Purdue University

{luo293, yuzhu}@purdue.edu

Abstract
How to obtain hierarchical representations with an increasing level of abstraction becomes one of the key issues of learning
with deep neural networks. A variety of RNN models have recently been proposed to incorporate both explicit and implicit
hierarchical information in modeling languages in the literature. In this paper, we propose a novel approach called the latent
indicator layer to identify and learn implicit hierarchical information (e.g., phrases), and further develop an EM algorithm to
handle the latent indicator layer in training. The latent indicator layer further simplifies a text’s hierarchical structure, which
allows us to seamlessly integrate different levels of attention mechanisms into the structure. We called the resulting architecture
as the EM-HRNN model. Furthermore, we develop two bootstrap strategies to effectively and efficiently train the EM-HRNN
model on long text documents. Simulation studies and real data applications demonstrate that the EM-HRNN model with
bootstrap training outperforms other RNN-based models in document classification tasks. The performance of the EM-HRNN
model is comparable to a Transformer-based method called Bert-base, though the former is much smaller model and does not
require pre-training.

Keywords: Hierarchical structure, EM algorithm, Bootstrap, Document classification, Deep neural networks

1. Introduction
Text classification is the process of assigning tags or
categories to texts according to their contents and is
one of the major tasks in Natural Language Process-
ing (NLP) with broad applications such as sentiment
analysis, topic labeling, and spam detection. An impor-
tant intermediate step in text classification is text repre-
sentation learning. Previous work uses various neural
network models to learn text representation, including
Convolution Neural Networks (CNNs) (Zhang et al.,
2015), Recurrent Neural Networks (RNNs) (Schmid-
huber, 1991), and attention mechanisms (Yang et al.,
2016).
Recently, how to obtain hierarchical representations
with an increasing level of abstraction becomes one of
the key issues of learning in deep neural networks. A
variety of hierarchical RNNs have been proposed to in-
corporate hierarchical representations in modeling lan-
guages in the literature. (Yang et al., 2016) proposed to
incorporate existing explicit text hierarchical informa-
tion. In particular, they proposed to process documents
at two levels, which are the word- and sentence-levels,
respectively, and obtained promising results.
Another approach to modeling hierarchical and tempo-
ral representations is to use multiscale RNNs (Schmid-
huber, 1992; El Hihi and Bengio, 1996; Koutnik et
al., 2014). (Chung et al., 2016) proposed the Hier-
archical Multiscale Recurrent Neural Networks (HM-
RNNs) equipped with boundary detectors that can dis-
cover underlying hierarchical structures without prior
information.
(Luo and Zhu, 2021) called hierarchical structures with
and without prior information as static and dynamic hi-

erarchical structures (or boundaries), respectively, and
proposed to use RNNs with Mixed Hierarchical Struc-
ture (MHS-RNN) to accommodate both types of struc-
tures. In particular, MHS-RNN was used to model
documents with word-, phrase-, and sentence-layers,
among which the word- and sentence-layers are static
and the phrase-layer is dynamic. Further more, (Luo
and Zhu, 2021) added attention mechanism to MHS-
RNN to improve its performance. The MHS-RNN
model with attention mechanism provides efficient rep-
resentations of long and complex texts and therefore
leads to better performances in several text classifica-
tion tasks.

MHS-RNN however suffers from some drawbacks.
Following (Chung et al., 2016), the detection of a dy-
namic boundary or phrase in MHS-RNN is essentially
done by treating the boundary detector as an extra gate
unit in LSTM (Schmidhuber, 1991). When a new dy-
namic boundary has been detected, the information will
be passed to the phrase-layer through the gate and fur-
ther update the phrase hidden state. Subsequently, the
updated phrase hidden state needs to be passed back
to the word-layer to start the processing of the next
words. This procedure is necessary for general multi-
scale RNNs, but is too complicated especially when in-
teracting with static boundaries. Moreover, this con-
stant exchange between the word- and phrase-layers
makes it difficult to impose attention mechanisms to
the word- and phrase-layers and train them separately.
Instead, MHS-RNN combines the units of the word-
and phrase-layers to form blocks and then add at-
tention mechanisms to the blocks. Although MHS-
RNN with added attention mechanism demonstrated

6105

improved performances, the full potential of attention
mechanisms has not been fully realized.
In order to overcome the drawbacks and further im-
prove upon MHS-RNN, in this paper, we propose to
treat the dynamic boundary detector as latent indicator
at the word-layer. Specifically, each word is equipped
with an indicator, which is assumed to be a Bernoulli
random variable whose parameter only depends on the
hidden state of the associated word. When an indicator
takes on the value 1, it indicates the end of a phrase.
Note that when the word-layer is processed from the
beginning to the end, all of the indicators will be cal-
culated, and the dynamic boundaries or phrases can be
determined. This helps achieve certain separation be-
tween the processing of the word- and phrase-layers.
The separation further enables us to impose separate
attention mechanisms to the word- and phrase-layers.
Together with the latent indicators, the attention mech-
anism imposed on the word-layer passes information
from the word-layer to the phrase-layer. The details of
the proposed architecture will be presented in Section
II.D.
The latent indicators themselves can be considered a
new layer associated with the word-layer, which we
refer to as the indicator layer. Because the values
of the indicators are unknown, the indicator layer is
considered a layer with missing values. When train-
ing the proposed model, we apply the Expectation-
Maximization (EM) algorithm (McLachlan and Krish-
nan, 2007) to handle the indicator layer. The indicator
layer equipped with the EM algorithm not only sim-
plifies the architecture of MHS-RNN, but also much
improves its performance in text classification tasks.
We refer to the proposed new architecture as the EM-
HRNN model.
In training, EM-HRNN faces one challenge. When
calculating the Q function in the EM algorithm, the
computational complexity increases exponentially as
the length of the text increases. In order to reduce
the computational complexity, we propose two dif-
ferent bootstrap strategies. The first strategy is to
divide a text into consecutive non-overlapping frag-
ments, and then EM-HRNN is trained on those frag-
ments one by one with the parameters of the other
fragments fixed. We refer to this strategy as non-
overlapping block bootstrap (Radovanov and Marcikić,
2014). The second strategy uses the local block boot-
strap method (Paparoditis and Politis, 2002). Experi-
mental studies show that when using either of the two
bootstrap strategies, our proposed EM-HRNN model
outperforms most other RNN-based models. The per-
formance of EM-HRNN with local block bootstrap is
fairly close to some transformer-based models (Sun et
al., 2019).
The major contributions of this paper are summarized
as follows.

• We propose to use latent indicators (i.e., the in-
dicator layer) instead of dynamic boundary detec-

tors to identify dynamic segments(e.g, phrases) in
the usual mixed hierarchical structure of a text and
further develop an EM algorithm to handle the in-
dicator layer during training.

• Taking an advantage of the latent indicator layer,
we also impose attention mechanism to the dy-
namic layer (e.g, phrase layer), and therefore in-
tegrate a text’s mixed hierarchical structure and
attention mechanisms into a unified model called
the EM-HRNN model. The EM-HRNN model
demonstrates promising performances in simula-
tion studies and real data applications.

• To mitigate the computational complexity encoun-
tered when training the EM-HRNN model on long
texts, we propose two bootstrap strategies, which
are the non-overlapping block bootstrap method
and the local block bootstrap method, respec-
tively. Simulation studies and real data applica-
tions show that both strategies are able to train
the EM-HMM model in an efficient and effective
fashion.

2. Model
In this section, we first briefly review the basic struc-
ture of Long Short-Term Memory (LSTM). We fur-
ther review the model of MHS-RNN with attention
mechanism, discuss its major limitations, and present
our ideas to improve upon the model. Then we apply
the ideas and propose the Recurrent Neural Networks
with Mixed Hierarchical Structures and EM Algorithm
(in short, EM-HRNN). At last, we introduce efficient
computational methods for training the proposed EM-
HRNN model, which include an EM algorithm and two
bootstrap algorithms.

2.1. LSTM-base Sequence Encoder
LSTM (Hochreiter and Schmidhuber, 1997) was orig-
inally developed to address the issues of gradient van-
ishing and explosion in training vanilla RNNs for long
sequences. Different from vanilla RNNs, LSTM uses
gating mechanisms to track the states of sequences.
When updating the LSTM cell at time step t of a se-
quence, the following calculations will be performed.

it = σ(Wiht−1 + Uixt + bi),

ft = σ(Wfht−1 + Ufxt + bf),

c̃t = tanh(Wcht−1 + Ucxt + bc),

ot = σ(Woht−1 + Uoxt + bo),

ct = it ⊙ c̃t + ft ⊙ ct−1,

ht = ot ⊙ tanh(ct).

(1)

Here σ is the element-wise sigmoid function and ⊙ is
the element wise product; xt is the input vector at time
t, and ht is the hidden-state vector at time t; Ui, Uf , Uc,
and Uo are the weight matrices of different gates for
input xt; Wi, Wf , Wc, and Wo are the weight matrices
for hidden state ht at different gates. bi, bf , bc, and bo
denote the bias vectors. f , i, and o correspond to the
forget, input, and output gates of a LSTM cell.

6106

2.2. MHS-RNN with Attention
Fig. 1 is a modified schematic diagram of the MHS-
RNN with attention model. It contains three layers:
a word-layer equipped with both static and dynamic
boundary detectors, a phrase-layer generated from the
word-layer by its dynamic boundary detector, and a
sentence-layer generated from the phrase-layer by the
static boundary detectors in the word-layer.

Figure 1: The MHS-RNN with attention architecture:
xij is the vector representation of jth input word in ith
sentence, hj

i is the hidden state of time step i layer
j. The dotted cell indicates that there is no update
here. We only marked the case where the detector is
activated(z or p = 1).

There are two levels of attention mechanism structures
in the model, which are represented by two layers of
rectangles in Fig. 1. The first layer of rectangles con-
tains the states of the word-layer and the phrase-layer,
and is referred to as word-phrase attention. The word-
phrase attention mechanism is used to extract the in-
formation from both the word- and phrase- layers, and
aggregate them to form a sentence vector and pass it on
to the sentence-layer. The second layer of rectangles
appears in the sentence-layer in Fig. 1 and is referred
to as sentence attention. The sentence attention is to
reward sentences that provide important information of
a document.
The model uses two types of boundary detectors in Fig.
1, where dynamic boundary detectors are denoted by z1t
and static boundary detectors are denoted by p1t . The
static boundary detector p1t is activated when punctu-
ation marks are detected. In Fig. 1, x15 and x24 are
the end of a sentence and the end of the document, re-
spectively. Thus the static boundary detector is acti-
vated at x15 and x24 (i.e. p15 = 1 and p19 = 1), and the
model will start to input the states of the word-layer and
phrase-layer into the word-phrase attention mechanism
and extract the sentence vector.
The dynamic boundary detector z1t is used to detect
dynamic boundaries that indicate the ends of phrases.
When the end of a phrase segment is detected, the
dynamic boundary detector will be turned on (e.g.,
z13 = 1, z15 = 1, z17 = 1, and z19 = 1 in Fig. 1), and
the model will feed the state of the detected segment
from the word-layer into the phrase-layer. Whether the
dynamic boundary detector is turned on or not is deter-
mined as z1t = 1 if z̃1t > 0.5 and z1t = 0 otherwise.

Here z̃1t is calculated by:

z̃
1
t = hardsigm((1 − z

1
t−1)Wdh

1
t−1 + Udxt + z

1
t−1Wdh

2
t−1 + bd)

(2)

Where hardsigm(x) = max(0,min(1, ax+1
2)) with

a being the hyper-parameter slope, Wd is the weight
matrix for hidden state ht, Ud is the weight matrix for
input xt, and bd is the bias vector.
Notice that at time step 3 in Fig. 1, the dynamic bound-
ary detector is turned on (i.e., z13 = 1), and the state h1

3

is passed to the phrase-layer. Next, the model needs to
reinitialize the state of h1

4 with h2
3 when learning h1

4. In
other words, the state of the phrase-layer (h2

3) is passed
back to the word-layer. This special operation happens
whenever a dynamic boundary is detected during train-
ing.

2.3. Replacing Dynamic Boundary Detector
with Latent Indicators

From Equation (3), we can see that when calculating
the dynamic boundary detector at time step t, it is nec-
essary to consider z1t−1 at the previous time step t − 1
as well as the states h1

t−1 and h2
t−1 of the word- and

phrase-layers, respectively. This requires the model to
simultaneously update the word- and phrase-layers at
all time steps, which is not only difficult to execute dur-
ing training, but also makes it difficult to incorporate
attention mechanisms to the word- and phrase-layers
separately. The reason is that the MHS-RNN model
needs to refer to h2

t−1 when updating h1
t , whereas the

attention mechanism needs to obtain all the states of
the word-layer in order to calculate h2

t−1. This clearly
leads to a conflict. Again from Equation (3), it is clear
that the dynamic boundary detector resembles the other
gates in the LSTM cell, and is indeed more complicated
because it involves both of the word- and phrase-layers.
We believe that the dynamic boundary detector
equipped with gate-like updating mechanism is over-
complicated for detecting phrases. In particular, the
feedback from the phrase-layer to the word-layer is
unnecessary. Although phrases are not pre-annotated,
they can be considered a latent structure embedded in
the word-layer. In this paper, we propose to assign
an indicator to each token of a text, which indicates
whether the token is the end of a phrase. All the in-
dicators together form a latent layer of the word-layer,
and only depend on the hidden states of the word-layer.
We refer to such a layer as the latent indicator layer.
Unlike the dynamic boundary detector in the MHS-
RNN model, the latent indicator layer does not depend
on the phrase-layer, therefore any feedback from the
phrase-layer to the word-layer. This greatly simpli-
fies the model structure and computational complexity,
and furthermore, it allows the incorporation of attention
mechanisms to the word- and phrase-layers separately.
Using the latent indicator layer, we integrate three lev-
els of attention mechanisms into the hierarchical struc-
ture (i.e. the word-, phrase-, and sentence-layers) of a

6107

text and call the resulting architecture as the Recurrent
Neural Network with Mixed Hierarchical Structure and
EM Algorithm (in short, EM-HRNN). Here the EM al-
gorithm (McLachlan and Krishnan, 2007) refers to the
computational method needed to handle the latent in-
dicator layers during training. The latent indicators are
not directly observable and can be considered missing
values. During training, the EM algorithm can be used
to impute the values of the indicators. We will present
the EM-HRNN model, the EM algorithm, and addi-
tional computational methods in the next subsection.

2.4. Model Architecture of EM-HRNN
The architecture of the EM-HNN model is shown in
Fig.2 and Fig.3. It consists of a number of layers: a
word layer, an indicator layer, a word-level attention
layer, a phrase layer, a phrase-level attention layer, a
sentence layer, a sentence-level attention layer, and at
last an output layer. We provide more details of these
layers below.

Figure 2: The first part of the EM-HRNN model. xij is
the word embedding obtained by pre-trained word2vec
model. zi(h

1
i) is the value of the latent variable ob-

tained by the indicator layer. αi’s and βi’s are the at-
tention weights with respect to the word-layer and the
phrase-layer, respectively.

Figure 3: The second part of the EM-HRNN model.
si are the sentence vector obtained in the first part. γi’s
are the attention weights with respect to sentence-layer.
v is the document vector calculated by the weighted
sum of these units.

Word layer Assume a document has L sentences de-
noted as s1, s2,. . . , sL, respectively, and wij repre-
senting the jth word in the ith sentence for i = 1, 2,
. . . , L, and j = 1, 2, . . . , Ti. First, we use the pre-
trained word2vec (Mikolov et al., 2013) model from

GLOVE1to embed the word wij and denote the re-
sult as xij , that is, xij = Word2vec(wij). Then we
apply LSTM to process the word embeddings wij’s
to obtain their annotations (i.e., hidden state h1

k) as
h1
k = LSTM(xij).

The separation between sentences will be directly pro-
cessed in the word-layer, and the resulting informa-
tion in this layer will be passed to phrase-layer and
sentence-layer. This processing operation plays the
same role as the static boundary detectors in MHS-
RNN (i.e., p5 = 1 in Fig. 2).
Indicator layer As discussed in the previous subsec-
tion, we add a latent indicator layer on top of the world
layer. Denote the indicator for the word at time step t
as zt. Further, we assume that zt follows the Bernoulli
distribution with intensity parameter πt. When zt is
turned on, that is, zt = 1, the corresponding word is
considered to be the end of a phrase segment. πt is
assumed to depend on the state of the word as πt =
σ(Wπh

1
t + bπ). Therefore, we have zt = 1 with prob-

ability πt and zt = 0 with probability 1− πt.
Note that the indicators are not directly observable, that
is, the exact value of zt is not available. In order to
better present the remaining layers of the EM-HRNN
model, we pretend that the values of zt’s are known as
in Fig. 1. During training, the values of zt’s will be
imputed by the EM algorithm as will be discussed later
on. When zt = 1 at time step t, a phrase segment is
detected, and the whole segment will be then fed to the
word-attention layer.
Word-attention layer After the indicator layer divides
all the words into segments. We add attention weights
to the words in each segment to calculate the phrase
vector and pass it on to the phrase-layer. We refer to
this process as word-attention. For a segment, specifi-
cally,

u
q
t = tanh(Wqh

1
t + bq),

αt =
exp((uq

t)
Tuq)∑

t exp((u
q
t)

Tuq)
,

qi =
∑
t

αth
1
t .

(3)

Here Wq and bq are the weight matrix and bias vector
for a Single-Layer Perceptron (SLP) and uq is a context
vector. qi is the phrase vector that summarizes all the
information of words in a phrase. We feed h1

t into the
SLP and hence obtain a normalized importance weight
αt through a softmax function. After that, we calcu-
late the phrase vector pi as a weighted sum of the con-
catenated vector h1

t based on the weights. Notice that
the context vector up is randomly initialized and jointly
learned during the training process.
Phrase layer After we obtain the phrase vectors (i.e.,
pi’s), we apply LSTM to encode the phrase vectors as
h2
t = LSTM(qt), and the outputs are then fed to the

phrase-attention layer.

1https://nlp.stanford.edu/projects/glove/

6108

Phrase-attention layer Next, we add attention weights
to the encoded phrases and name this operation phrase-
attention. The phrase-attention mechanism is used to
extract the information from the phrase layer, and then
aggregate them to obtain sentence vectors and further
pass them on to the sentence-layer. Specifically,

u
s
t = tanh(Wsh

2
t + bs),

βt =
exp((us

t)
Tus)∑

t exp((u
s
t)

Tus)
,

si =
∑
t

βth
2
t .

(4)

Here si is the sentence vector that summarizes all the
information of phrases in a sentence and us is the con-
text vector.
Sentence layer After we obtain the sentence vectors
(i.e., si’s), we implement a bidirectional LSTM to en-
code the sentence vectors as

←−
h3
t =
←−−−−
LSTM(st),

−→
h3
t =

−−−−→
LSTM(st).

We concatenate
←−
h3
t and

−→
h3
t to get an annotation h3

t =

[
←−
h3
t ,
−→
h3
t] of sentence t.

Sentence attention layer At last, we add attention
weights to the sentence annotation as shown in Fig. 3,
and name this operation sentence attention. The sen-
tence attention is to reward sentences that provide im-
portant information for a document. Specifically,

u
d
t = tanh(Wdh

3
t + bd),

γt =
exp((ud

t)
Tud)∑

i exp((u
d
t)

Tud)
,

v =
∑
t

γth
3
t .

(5)

Here v is the document vector that summarizes all the
information of sentences in a document and ud is the
context vector.
Document Classification In the paper, we focus on the
task of document classification. The document vector
v is a high-level representation of the document and
can be used as features for document classification as
p = softmax(Wcv + bc).
We use the negative log likelihood of the correct labels
as training loss: L = −

∑
d log pdj

, where j is the
label of document d.

2.5. EM Algorithm
The loss function L above is in fact the complete like-
lihood function, under the assumption that the values
of the latent indicators are known. In practice, as we
mentioned in subsection C, they are not observable and
thus missing. The Expectation-Maximization (EM) al-
gorithm can be used to impute the latent indicators.
Consider a general statistical model p(W,Z; θ), in
which W represents the observed data, Z the miss-
ing data, and θ the model parameters. Therefore, the
complete likelihood function is L(θ;W,Z). The maxi-
mum likelihood estimate of θ denoted as θ̂ is defined as

the maximizer of the marginal likelihood function As
L(θ;W) = P (W |θ) =

∫
P (W,Z|θ)dZ instead.

The EM algorithm calculates θ̂ by iteratively apply-
ing an Expectation step (E-step) and a Maximiza-
tion step (M-step) as follows. The E-step Cal-
culates the expected log complete likelihood func-
tion under the current parameter estimate, θ(t):
Q(θ|θ(t)) = EZ|W,θ(t) [logL(θ;W ;Z)] and the M-step
Updates the parameter estimate by solving θ(t+1) =
arg maxθQ(θ|θ(t))
We apply the EM algorithm to the proposed EM-
HRNN model as follows. Suppose the document
under consideration is of length n. The indica-
tors z1, z2, . . . , zn are not observed and they form
the missing data Z = (z1, z2, . . . , zn). Recall the
π1, π2, . . . , πn are the intensity parameters of the in-
dicators. Further, we use θ to represent the other pa-
rameters in the model.
Assume that θ(i) and π(i) are the current estimates of
the parameters. Then the Q function for the EM algo-
rithm can be defined as

Q(θ, π|θ(i)
, π

(i)
)

=
∑
Z

p(Z|y, w, θ
(i)

, π
(i)

)log p(y, Z|w, θ, π),

=
∑
Z

log p(y, Z|w, θ, π)p(y, Z|w, θ(i), π(i))

p(y|Z,w, θ(i), π(i))
.

Here w is the vector of the input tokens, y is the vector
of the given labels for documents. We further simplify
the Q function and obtain a form that can be computed.
Due to limited space, more details are omitted. Once
Q is available, we subsequently maximize Q to update
the parameter estimates.
Note that each time we update the Q function, we have
to exhaust all the possible cases of the n indicators,
and the computational complexity is 2n. Therefore,
as the sequence length increases, the calculation time
increases exponentially. Next, we propose to use boot-
strap methods to mitigate the computational cost.

2.6. Bootstrap Strategies
Similar to general time series data, correlation exists
between consecutive tokens or words of a document.
To preserve this correlation structure, we propose to use
two block bootstrap strategies to train the EM-HRNN
model. The two strategies are non-overlapping block
bootstrap (Radovanov and Marcikić, 2014) and local
block bootstrap (Radovanov and Marcikić, 2014), re-
spectively.
Note that, when applying bootstrap, we choose the
classification EM approach (Celeux and Govaert,
1992) to impute the value of latent indicators, as zt = 1
if πt > 0.5 and zt = 0 otherwise.
Non-overlapping block bootstrap Non-overlapping
block bootstrap divides the sequence data into several
non-overlapping blocks. We then train the model on the
blocks sequentially instead of directly train the model

6109

on the entire sequence. Note that when training a cer-
tain block, we will fix the parameters of other blocks.
The computational complexity to calculate Q function
reduce from 2n to 2l × ⌈nl ⌉ where l is the length of the
block.
Local block bootstrap If the underlying stochastic
structure is slowly changing with time, a local block-
resampling procedure can be employed. Local block
bootstrap selects several neighborhoods to form blocks
and then train the model on those blocks. In this paper,
We selected 10 neighborhoods of length 5. The details
of the local block bootstrap are shown in Algorithm 1.

Algorithm 1 Local block bootstrap
1: for iteration i = 1, 2, . . .,K do,
2: for iteration i = 1, 2, . . .,M do,
3: Randomly pick 10 tokens from

the document (i.e., {xi1 , xi2 , . . . , xi10} ∈
{x1, x2, x3, . . . , xn}).

4: Create a neighbourhood of length 5
for each select token to form a block. In
this case, the kth block would be Bk =
{xik−2, xik−1, xik , xik+1, xik+2}.

5: Update the parameter with respect to RNN
network, fix the parameter with respect to latent
indicator Z.

θ
(i+1)

= argmaxθ Q(θ, π = π
(i)|θ(i)

, π = π
(i)

).

6: for blocks B1, B2, . . . , B10 do
7: Update the parameter with respect to

Block Bk, fixed other parameter.

π
(i+1)
Bk

=

argmaxπBk
Q(θ = θ

(i)
, π−Bk

= π
(i)
−Bk

, πBk
|θ(i)

, π
(i)

).

8: end for
9: end for

10: end for

In Algorithm 1, πBi is the probability parame-
ters π with respect to block Bi (i.e., πBi

=
{πik−2, πik−1, πik , πik+1, πik+2}. π−Bi

denotes all
the probability parameters exclude πBi

. For comput-
ing the Q function, the complexity reduces from 2n to
25 × 10 × M , where M is the number of bootstrap
samples.

3. Experiment
3.1. Simulation Experiment
The purpose of this experiment is to compare the capa-
bilities of different hierarchical models for discovering
hierarchical structures in simulated data.
We generate 10000 training documents and 1000 test
documents. Each simulated document consists of two
sentences, each of which consists of five tokens. The
tokens here are represented by randomly generated 50-
dimensional vectors, where we set the last token in each
sentence to be the same vector. We then randomly gen-

erate the latent indicator z for each token with the label
of the last token in each sentence set to 1.
Since we know the ground truth of the segments of
phrases is known, the documents can be fed into a
three-layer attention LSTM with known parameters to
generate document labels, where the three layers cor-
respond to words, phrases and sentences, respectively,
and the labels range from 1 to 5.
We compare the proposed EM-HRNN with two exist-
ing models MH-RNN (Chung et al., 2016) and MHS-
RNN (Luo and Zhu, 2021). In the experiment, we im-
plement EM-HRNN with non-overlapping block boot-
strap, local block bootstrap, and without bootstrap.
Since the document length is 10, it is feasible to iter-
ate over all possible segments. Thus we implement
EM-HRNN without bootstrap which leads to the ex-
act maximum likelihood estimates of the parameters.
When implementing the non-overlapping block boot-
strap strategy, We vary the block length from 1 to 5 as
the sentence length is 5.
In the experiment, our focus is on how successful the
models recover the latent indicator z’s. Note that for
each document, there are 10 indicators. Thus overall
we have 100000 indicators in the training dataset and
10000 indicators in the test dataset. The performance
measure in this experiment is the percentage of indica-
tors correctly recovered by a method.

Method Traing performance Test performance
HMRNN 95.2% 90.1%
MHS-RNN 97.7% 91.9%
EM-HRNN with window size 1 97.2% 89.68%
EM-HRNN with window size 2 97.2% 90%
EM-HRNN with window size 5 97.6% 91%
EM-HRNN with local bootstrap 98% 92.7%
EM-HRNN without bootstrap 98% 93%

Table 1: Results of simulation experiment. EM-HRNN
with window size k represents EM-HRNN with non-
overlapping bootstrap and block length k.

From Table 1, we can see that EM-HRNN without
bootstrap achieves the best performance as we expected
while EM-HRNN with local bootstrap follows by a
small margin. EM-HRNN with window sizes 1, 2 and
5 underperform MHS-RNN. Notice that when we in-
crease the block length, the performance also increases.
If we continue to increase the block length k, EM-
HRNN with non-overlapping bootstrap will eventually
outperform MHS-RNN but this also greatly increases
the amount of computation. Taking into account both
the amount of computation and performance, EM-
HRNN with local bootstrap would be the best choice
in practice.
In the following subsections, we will compare EM-
HRNN with other existing document classification
models in real datasets.

3.2. Real Data Analysis
Datasets We evaluate our proposed model on five dif-
ferent document classification datasets. There are three

6110

datasets of Yelp reviews, which are obtained respec-
tively from 2013, 2014, and 2015 Yelp dataset chal-
lenges. The other two are Amazon review and Yahoo
answer. Among them, the Yelp reviews and Amazon
reviews are sentiment classification tasks. Their labels
range from 1 to 5, respectively, indicating that review-
ers are very dissatisfied to very satisfied. The Yahoo
answer is a topic classification task. There are ten topic
classes in the Yahoo answer dataset. Details of these
datasets can be found in related references.
Settings and Details In the experiments, we set the di-
mension of the pre-trained word embedding method to
be 100 following (Luo and Zhu, 2021). We only retain
words that appear in the word2vec model and replace
the other words with the special token ’UNK’.
The hyper-parameters are tuned on validation datasets.
During experiments, we set the dimensions of all the
involved layers to be 50 (following (Yang et al., 2016)).
We require the three attention mechanisms to have the
same dimensions as the layers in the neural networks.
Furthermore, we apply random initialization to all the
layers.
For training, we set a mini-batch size to be 64 and or-
ganize documents of similar lengths to be batches. We
use stochastic gradient descent to train all the models
with a momentum of 0.9. Because the original datasets
do not include the validation set, we randomly select
10% of the training samples as the validation sets. We
pick the best learning rate on the validation sets.
For non-overlapping block bootstrap strategy, we in-
crease the block length from 1 to 5. Note that when
the block length is greater than 5, the amount of calcu-
lation increases significantly and the strategy become
impractical.
Results and Analysis The results are displayed in Ta-
ble 2.

Methods Yelp’13 Yelp’14 Yelp’15 Yahoo Answer Amazon
Bag-of-means (Zhang et al., 2015) - - 52.5 60.5 44.1
SVM+SSWE (Tang et al., 2015) 53.5 54.3 55.4 - -
LSTM (Zhang et al., 2015) - - 58.2 70.8 59.4
CNN-word (Zhang et al., 2015) - - 60.5 71.2 57.6
Conv-GRNN (Tang et al., 2015) 63.7 65.5 66 - -
LSTM-GRNN (Tang et al., 2015) 65.1 67.1 67.6 - -
CMA (Ma et al., 2017) 66.4 67.6 - - -
BiLSTM+linear-basis-cust (Kim et al., 2019) - 67.1 - - -
HN-AVE (Yang et al., 2016) 65.6 67.3 67.8 71.8 59.7
HN-ATT (Yang et al., 2016) 66 68.9 69.4 73.8 60.7
HM-RNN (Chung et al., 2016) 64 64.5 64.9 71 59
MHS-RNN (Luo and Zhu, 2021) 65.2 67.5 67.7 72.3 59.7
MHS-RNN with attention (Luo and Zhu, 2021) 66.8 69.3 69.9 74.1 61.2
Bert-base (Sun et al., 2019) - - 71.4 75.4 61.9
EM-HRNN with window size 1 66.8 69.2 70.5 74.4 61.4
EM-HRNN with window size 2 66.9 68.3 70.8 74.7 61.6
EM-HRNN with window size 5 67.1 69.5 71.2 75.1 61.9
EM-HRNN with local bootstrap 67.7 70.1 71.6 75.7 62.2

Table 2: Results in real datasets. The number here
represents the prediction accuracy of the document la-
bel in the test set. Each dash lines in the table indicates
that the corresponding dataset has not been reported by
the reference paper.

From Table 2, we compared our methods with both pre-
trained classifier Bert-base and other non pre-trained
classifiers. EM-HRNN with the non-overlapping block
bootstrap with window size equal to 5 outperforms
the existing non pre-trained best baseline classifiers by

margins of 0.3, 0.2, 0.6, 0.6, and 0.7 in percentage
points, respectively.
EM-HRNN with local bootstrap lead to even better re-
sults. On all datasets, EM-HRNN with local bootstrap
outperforms the existing non pre-trained best baseline
classifiers by margins of 0.9, 0.8, 1.7, 1.6, and 1 in per-
centage points, respectively.
The results demonstrate that by treating the phrase
segmentation boundaries as latent indicators and in-
corporating the EM algorithm, EM-HRNN get a bet-
ter performance in the document classification tasks.
Bootstrap with local bootstrap strategy is an effective
method to reduce computational complexity under the
premise of less impact on performance.
Moreover, we compare to the EM-HRNN with a large
pre-trained model called Bert-base (Sun et al., 2019).
In (Sun et al., 2019), the authors fine tuned Bert-base
on Yahoo answer dataset. Following this work, we fine
tuned Bert-base on Yelp’15 and Amazon datasets and
compare it to EM-HRNN. As shown in the Table 2,
EM-HRNN with local bootstrap outperforms Bert-base
by margins of 0.3, 0.2 and 0.3 in percentage points,
respectively. The improvements of EM-HRNN over
Bert-base is significant because Bert-base trained use
more datasets for pretraining, and has ten times more
parameters than EM-HRNN.

3.3. Analysis of Latent Indicators
Recall that latent indicator Z’s are not pre-annotated,
instead, they are learned during the training of the mod-
els. Not only can the latent indicator Z’s help produce
better performances in document classification tasks,
but they also provide linguistically meaningful segmen-
tation of a text. In this subsection, we analyze the latent
indicator Z’s in the experiments. Due to space limita-
tions, here we choose to report the comparison between
EM-RNN with local block bootstrap and MHS-RNN.
We first checked the lengths of the learned phrases. The
length of a phrase is defined as the number of words
between two active Z’s (i.e., z = 1) with the first active
z excluded and the second active z included.
When comparing EM-HRNN with MHS-RNN, we can
see that EM-HRNN prefers shorter segment phrases.
Among all datasets, the average length of MHS-RNN
phrase segmentation is 4.72, while that of EM-HRNN
is 4.31. The minimum phrase length obtained by both
of the methods is 1. The longest phrase obtained by
MHS-RNN is 17, while that by EM-HRNN is 11.
We then randomly selected 200 documents from all 5
datasets. Among them, we selected two representative
examples, given in Fig. 4 and Fig. 5.
One noteworthy place in the two figures is a clause,
located between the first punctuation mark and the sec-
ond punctuation mark: LIKE THE SAYING GOES U
HAVE 2 LET SOME THINGS GO 2 LET UR BLESS-
INGS FLOW. In MHS-RNN, this clause is not seg-
mented into phrases. But in EM-HRNN, this sub-
sentence is segmented into LIKE THE SAYING GOES

6111

Figure 4: A sample from Amazon review dataset us-
ing MHS-RNN with attention. The double slash indi-
cates that this place is a phrase clause obtained by the
model. The colored part of the figure represents the
highest proportion of the attention mechanism in the
model.

Figure 5: A sample from Amazon review dataset us-
ing EM-HRNN with local bootstrap. The double slash
indicates that this place is a phrase clause obtained by
the model. The colored part of the figure represents the
highest proportion of the attention mechanism in the
model.

U HAVE 2, LET SOME THINGS GO 2, LET UR and
BLESSINGS FLOW. Note that 2 here is the abbrevia-
tion of to, and UR in this place is the abbreviation of
you are. The phrase segmentations from EM-HRNN is
more detailed and meaningful than MHS-RNN. Com-
bined with the fact that EM-HRNN is more inclined to
produce shorter phrases. We believe that the phrases
obtained by EM-HRNN are closer to a semantic unit.
We then explore the quality of the attention mecha-
nisms used in EM-HRNN and MHS-RNN. We com-
pare the attention weights in both models on some
words that express strong emotions.

Words Avg weights in MHS-RNN Avg weights in EM
Good 0.62 0.69
Bad 0.57 0.67
Great 0.51 0.56
Sad 0.49 0.54
Excellent 0.44 0.51

Table 3: The average attention of some commonly
used words that indicate strong emotions.

It can be seen from the Table 3 that among all these
words with strong emotions, the attention weights as-
signed by EM-HRNN are overall higher than those
of MHS-RNN. We next made a detailed comparison

among the 200 randomly selected samples mentioned
above. We compared the most important words in the
documents selected by the two models. Here the most
important word in a document is obtained by following
steps. For HM-RNN, we first find the sentence with
most attention weights. Then we find the phrase with
most attention weights in that sentence. At last we find
the word with most attention weights in that phrase.
For MHS-RNN, we first find the sentence with most at-
tention weights. Then we directly find the words with
most attention weights in that sentence.

Among all 200 documents, the two models selected the
same important words in 176 documents and selected
differently in the other 24 documents. Among them,
we believe that the words selected by EM-HRNN in 14
documents can better express the emotional tendency
of the documents. There are 7 documents in which the
two models have selected different words, and we can-
not determine which one is better. There are only 3
documents, in which we think the words selected by
MHS-RNN are more representative.

In the two examples we showed in Figure 3 and 4 ear-
lier, both models assign the largest attention weight to
sentence SHE DID FIND HER ANOTHER MAN AT
THE END AND THAT WAS ALL WELL AND GOOD
AND I WAS HAPPY FOR EACH OF THE CHARAC-
TERS IN THE BOOK AND I WISH U THE VERY
BEST IN UR CAREER. But the word-phrase attention
in MHS-RNN assigns the maximum attention to the
word well in the phrase that was all well and. But the
attention mechanism in EM-HRNN assigns the high-
est attention weight to the phrase I was happy for and
assigns the highest attention weight to the word happy
in the above phrase. Consider the entire paragraph, we
can see that the phrase I was happy for has a stronger
sentiment than the phrase that was all well and, which
is more helpful to judge the sentiment of the document.
We believe that the hierarchical attention mechanism
composed of words, phrases, and sentences achieves a
better performance.

4. Conclusion

In the paper, we propose the EM-HRNN model to rep-
resent both explicit and implicit hierarchical informa-
tion in a text, and further integrate different levels of
attention mechanisms into the model. Using bootstrap
strategies, the EM-HRNN model outperforms other
RNN-based hierarchical models in document classifi-
cation tasks and also demonstrates better performance
than Bert-base. There are two directions we will pur-
sue to further investigate the proposed model. First, we
will study the performances of the EM-HRNN model in
other NLP tasks. Second, a more thorough comparison
study with other Transformer-based models is needed
in order to understand the potential of the EM-HRNN
model.

6112

5. Bibliographical References
Celeux, G. and Govaert, G. (1992). A classification

em algorithm for clustering and two stochastic ver-
sions. Computational statistics & Data analysis,
14(3):315–332.

Chung, J., Ahn, S., and Bengio, Y. (2016). Hierar-
chical multiscale recurrent neural networks. arXiv
preprint arXiv:1609.01704.

El Hihi, S. and Bengio, Y. (1996). Hierarchical recur-
rent neural networks for long-term dependencies. In
Advances in neural information processing systems,
pages 493–499.

Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural computation,
9(8):1735–1780.

Kim, J., Amplayo, R. K., Lee, K., Sung, S., Seo, M.,
and Hwang, S.-w. (2019). Categorical metadata rep-
resentation for customized text classification. Trans-
actions of the Association for Computational Lin-
guistics, 7:201–215.

Koutnik, J., Greff, K., Gomez, F., and Schmidhu-
ber, J. (2014). A clockwork rnn. arXiv preprint
arXiv:1402.3511.

Luo, Z. and Zhu, M. (2021). Recurrent neural net-
works with mixed hierarchical structures for natural
language processing.

Ma, D., Li, S., Zhang, X., Wang, H., and Sun,
X. (2017). Cascading multiway attentions for
document-level sentiment classification. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 634–643.

McLachlan, G. J. and Krishnan, T. (2007). The EM
algorithm and extensions, volume 382. John Wiley
& Sons.

Mikolov, T., Chen, K., Corrado, G., and Dean, J.
(2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

Paparoditis, E. and Politis, D. N. (2002). Local
block bootstrap. Comptes Rendus Mathematique,
335(11):959–962.

Radovanov, B. and Marcikić, A. (2014). A comparison
of four different block bootstrap methods. Croatian
Operational Research Review, pages 189–202.

Schmidhuber, J. (1991). Neural sequence chunkers.
Schmidhuber, J. (1992). Learning complex, extended

sequences using the principle of history compres-
sion. Neural Computation, 4(2):234–242.

Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How
to fine-tune bert for text classification? In China Na-
tional Conference on Chinese Computational Lin-
guistics, pages 194–206. Springer.

Tang, D., Qin, B., and Liu, T. (2015). Document mod-
eling with gated recurrent neural network for senti-
ment classification. In Proceedings of the 2015 con-
ference on empirical methods in natural language
processing, pages 1422–1432.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and
Hovy, E. (2016). Hierarchical attention networks
for document classification. In Proceedings of the
2016 conference of the North American chapter of
the association for computational linguistics: hu-
man language technologies, pages 1480–1489.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-
level convolutional networks for text classification.
In Advances in neural information processing sys-
tems, pages 649–657.

Celeux, G. and Govaert, G. (1992). A classification
em algorithm for clustering and two stochastic ver-
sions. Computational statistics & Data analysis,
14(3):315–332.

Chung, J., Ahn, S., and Bengio, Y. (2016). Hierar-
chical multiscale recurrent neural networks. arXiv
preprint arXiv:1609.01704.

El Hihi, S. and Bengio, Y. (1996). Hierarchical recur-
rent neural networks for long-term dependencies. In
Advances in neural information processing systems,
pages 493–499.

Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural computation,
9(8):1735–1780.

Kim, J., Amplayo, R. K., Lee, K., Sung, S., Seo, M.,
and Hwang, S.-w. (2019). Categorical metadata rep-
resentation for customized text classification. Trans-
actions of the Association for Computational Lin-
guistics, 7:201–215.

Koutnik, J., Greff, K., Gomez, F., and Schmidhu-
ber, J. (2014). A clockwork rnn. arXiv preprint
arXiv:1402.3511.

Luo, Z. and Zhu, M. (2021). Recurrent neural net-
works with mixed hierarchical structures for natural
language processing.

Ma, D., Li, S., Zhang, X., Wang, H., and Sun,
X. (2017). Cascading multiway attentions for
document-level sentiment classification. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 634–643.

McLachlan, G. J. and Krishnan, T. (2007). The EM
algorithm and extensions, volume 382. John Wiley
& Sons.

Mikolov, T., Chen, K., Corrado, G., and Dean, J.
(2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

Paparoditis, E. and Politis, D. N. (2002). Local
block bootstrap. Comptes Rendus Mathematique,
335(11):959–962.

Radovanov, B. and Marcikić, A. (2014). A comparison
of four different block bootstrap methods. Croatian
Operational Research Review, pages 189–202.

Schmidhuber, J. (1991). Neural sequence chunkers.
Schmidhuber, J. (1992). Learning complex, extended

sequences using the principle of history compres-
sion. Neural Computation, 4(2):234–242.

6113

Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How
to fine-tune bert for text classification? In China Na-
tional Conference on Chinese Computational Lin-
guistics, pages 194–206. Springer.

Tang, D., Qin, B., and Liu, T. (2015). Document mod-
eling with gated recurrent neural network for senti-
ment classification. In Proceedings of the 2015 con-
ference on empirical methods in natural language
processing, pages 1422–1432.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., and
Hovy, E. (2016). Hierarchical attention networks
for document classification. In Proceedings of the
2016 conference of the North American chapter of
the association for computational linguistics: hu-
man language technologies, pages 1480–1489.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-
level convolutional networks for text classification.
In Advances in neural information processing sys-
tems, pages 649–657.

	Introduction
	Model
	LSTM-base Sequence Encoder
	MHS-RNN with Attention
	 Replacing Dynamic Boundary Detector with Latent Indicators
	Model Architecture of EM-HRNN
	EM Algorithm
	Bootstrap Strategies

	Experiment
	Simulation Experiment
	Real Data Analysis
	Analysis of Latent Indicators

	Conclusion
	Bibliographical References

