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Abstract
Annotation inconsistencies between data sets can cause problems for low-resource NLP, where noisy or inconsistent data cannot be
as easily replaced compared with resource-rich languages. In this paper, we propose a method for automatically detecting annotation
mismatches between dependency parsing corpora, as well as three related methods for automatically converting the mismatches. All
three methods rely on comparing an unseen example in a new corpus with similar examples in an existing corpus. These three methods
include a simple lexical replacement using the most frequent tag of the example in the existing corpus, a GloVe embedding-based
replacement that considers a wider pool of examples, and a BERT embedding-based replacement that uses contextualized embeddings
to provide examples fine-tuned to our specific data. We then evaluate these conversions by retraining two dependency parsers—Stanza
(Qi et al., 2020) and Parsing as Tagging (PaT) (Vacareanu et al., 2020)—on the converted and unconverted data. We find that applying
our conversions yields significantly better performance in many cases. Some differences observed between the two parsers are observed.
Stanza has a more complex architecture with a quadratic algorithm, so it takes longer to train, but it can generalize better with less data.
The PaT parser has a simpler architecture with a linear algorithm, speeding up training time but requiring more training data to reach
comparable or better performance.
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1. Introduction
Examples found in one data set that are not found in another
can represent either unseen examples or inconsistencies in
annotation. These annotation differences may not be a ma-
jor problem for resource-rich languages—if a text or data
set contains errors or inconsistencies, the researcher can re-
move the faulty data and replace it with valid data—but this
is not true for low-resource languages. Low-resource lan-
guages have limited amounts of annotated data available
for NLP tasks, so any data that is compromised by errors or
inconsistent annotations cannot as easily be replaced.

This project looks at reducing annotation differences be-
tween two different corpora in order to augment training
data in a more informed, consistent way. If successful,
this automatic conversion can aid research on low-resource
NLP by embiggening the pool of clean, usable data avail-
able to researchers.

The contributions of this work are:

(1) We propose a simple approach for automatically iden-
tifying mismatches between two Universal Dependencies
(UD) dependency parsing data sets. First, we identify all
the tokens in a head-dependent relation in each data set,
along with the specific relations they occur with. Next, we
identify the relations that occur between a head-dependent
word pair in the second data set but not the first. This results
in a set of potential annotation errors.

(2) Once we have our set of potential annotation errors
in the second data set, we propose three methods for auto-
matically converting the data. In the simplest version, we
use the most frequent relation for a given head-dependent
word pair in the first data set to replace the unseen rela-
tion in the second data set. A more complex approach uses
GloVe embeddings (Pennington et al., 2014) to expand the
set of head-dependent word pairs in the first data set from

Corpus Word Pair Relations & Counts

A <such, as> {fixed: 35}
B (original) <such, as> {mwe: 20, advmod: 5}

B (converted) <such, as> {fixed: 25}

Table 1: Lexical replacement approach. We replace unique
relations for a word pair in Corpus B with the most frequent
relation for that pair in Corpus A.

which to select the most frequent relation to replace the un-
seen relation in the second data set. Our final approach uses
BERT embeddings (Devlin et al., 2018) contextualized on
our specific training data, but is otherwise identical to our
GloVe-based approach.
An example of the lexical version is shown in Table 1. In
this toy example, we see that the word pair <such, as> only
occurs in Corpus A with the UD relation fixed (for fixed
expressions), and it occurs in Corpus B with the UD rela-
tions mwe and advmod. As these two relations are unseen
for this word pair in Corpus A, we want to change the en-
tries in Corpus B to more closely match Corpus A. In this
case, all instances of mwe and advmod in Corpus B for the
word pair <such, as> are replaced with the most frequent
label in Corpus A, which is fixed.

(3) Despite its simplicity, we show that this automatic ap-
proach performs well in certain contexts. For example, the
best performing model is a converted condition in all but
one case, and many of the converted conditions are signifi-
cantly better than the unconverted condition.

2. Related Work
Our project builds on work in syntactic dependency pars-
ing, data cleaning, and low-resource NLP.
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The NLP task used to evaluate our approaches is syntactic
dependency parsing. The core of this task involves identify-
ing the unique syntactic head for a given token and the label
of the relation that holds between the head and its modi-
fiers. The two parsers we use for our evaluation are Stanza
(Qi et al., 2020) and Parsing as Tagging (PaT) (Vacareanu
et al., 2020). These parsers are part of an ongoing trend
in dependency parsing that marries simplicity with perfor-
mance. Details about these two parsers can be found in Sec-
tion 4.3. Other papers in this direction include Fernández-
González and Gómez-Rodrı́guez (2019), Ma et al. (2018),
and Kiperwasser and Goldberg (2016).

Data cleaning can be a problem within a single source,
but becomes especially important when combining data
from different sources. Rahm and Do (2000) and Chu
et al. (2016) provide general overviews of data cleaning ap-
proaches and challenges. Specific to NLP, Fu et al. (2020)
considers the problem of combining different corpora for
a named entity recognition task. They develop two met-
rics for measure the similarity between two data sets, then
show how that measure correlates with a model’s perfor-
mance on a cross-data-set generalization experiment. They
additionally experiment with detecting and correcting an-
notation errors in their data sets. Their approach, however,
involves manual correction, as the errors they identify in the
named entity recognition data sets are non-systematic and
hard to automatically fix.

Lack of annotated training data is one of the hallmarks of
a low-resource language. A resource like word embed-
dings can be created for a low-resource language based on
raw, unannotated text, but syntactic parsing relies on hav-
ing annotations. Universal Dependencies (UD), a frame-
work for annotating syntactic and morphological informa-
tion, has annotated data sets available for over 100 lan-
guages, with more being added all the time. This is inching
towards lower-resource languages, but there are still many
languages not yet supported. For this reason, there has been
a lot of work on speeding up or even bypassing the an-
notation process for low-resource languages. Tiedemann
and van der Plas (2016) describes an approach for boot-
strapping a dependency parser for Maltese (Semitic: Malta)
by using annotation projection and model transfer from
other languages. They consider languages close to Mal-
tese by language family or language contact as well as lan-
guages with high-performing dependency parsers. Tiede-
mann et al. (2016) describes an effort to morphologically
tag Ingush (Northeast Caucasian: Russia) via interlinear
glosses in English from linguistic fieldwork notes. The re-
sults of these approaches is promising, but the authors note
that it may be more practical at times to invest in manual
annotation than to try to tweak transfer models.

Our project builds upon these three categories of work. For
dependency parsing, we compare two recent parsers part
of the ongoing trend towards simplicity. For data cleaning,
we propose automatic correction methods that streamline
the process compared to previous manual corrections. For
low-resource languages, we demonstrate that our automatic
methods can improve performance on parsing without the
need to manually annotate additional data.

3. Approach
This section discusses our method for automatically identi-
fying syntactic dependency annotation differences between
two corpora and our three approaches for automatically cre-
ating the converted training data sets used for dependency
parsing using those annotation differences.

3.1. Identifying Annotation Differences
All three approaches to converting the augment corpus data
first require that we identify annotation differences between
the data sets that may need converting. The method of iden-
tifying these annotation differences follows. First, we col-
lect a list of all the head-dependent word pairs in the base
corpus (the corpus we will use for testing), along with all
the relations that occur with each of those pairs. Then, we
collect similar lists of all the head-dependent word pairs
in the augment corpus (the corpus we will add to the base
corpus) and the relations that occur with those pairs. For
the purposes of this project, any relation that occurs with a
head-dependent word pair in the augment corpus but not in
the base corpus is an annotation difference.

Once these differences are are identified, we proceed to the
next step of automatically conversions. For this project, the
three approaches for automatically converting the data use
the same set of annotation differences identified with the
method described in this section.

3.2. Lexical Approach
The first approach uses a naı̈ve token-based method of
replacement. For a head-dependent-relation triple from
the augment corpus that doesn’t show up in the base cor-
pus, we simply replace the relation for that specific head-
dependent-relation triple in the augment corpus with the
most common relation for that head-dependent word pair
in the base corpus. This is essentially retagging with the
mot common tag, but only in cases where the relation for
the word pair is unobserved in the augment corpus. From
our toy example in Table 1, this would mean replacing mwe
and advmod with fixed for the word pair <such, as>,
as fixed is the most common tag for that pair in the base
corpus. The benefit of this approach is that it is simple to
implement and it does not require word embeddings for the
language.

3.3. GloVe Embedding Approach
As with the Lexical approach, we want to replace the un-
seen relation in the augment corpus with a relation we have
seen in the base corpus. However, instead of relying on the
exact head-dependent word pair, which can be sparse, this
approach uses GloVe embeddings (Pennington et al., 2014)
to generalize to additional word pairs. For each word in the
head-dependent word pair, we use the Pymagnitude (Patel
et al., 2018) library for Python with GloVe vectors to gen-
erate the top 101 most similar words to the original word.
From these candidates, we create new candidate word pairs
by combining each new head and dependent word. From

1This is a hyperparameter that could be trained or adjusted.
Also note that the similarity scores for the top 10 most similar
words were not filtered below any threshold.
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Corpus Word Pair Relations & Counts

A <have, n’t> {dep: 9}
A <has, n’t> {neg: 5}
A <would, n’t> {neg: 5}

B (original) <have, n’t> {advmod: 6}
B (converted) <have, n’t> {neg: 6}

Table 2: Embedding-based replacement approach. The
most frequent relation when considering only the exact pair
<have, n’t> is the (incorrect) dep. The most frequent rela-
tion when considering the exact pair and related word pairs
using vector similarity is the (correct) neg.

this set of candidate word pairs, we then see which ones
actually occur in the base corpus. Out of these, plus the
original word-pair, we then choose the most frequent re-
lation overall to replace the relation for the original head-
dependent word pair in the augment corpus. An example of
this is shown in Table 2. In this case, selecting from a wider
set of word pairs yields a better replacement (neg) than
only considering the exact match (dep). This approach
has the benefit of being able to generalize beyond the exact
word pair, which can be especially useful in low-resource
settings with limited data. However, it does rely on having
pretrained word embeddings available for the language.

3.4. BERT Embedding Approach
This approach is similar to the GloVe Embedding approach,
but it uses a different strategy for generating word embed-
dings. Unlike the GloVe vectors, which are pretrained on
data that could differ from the specific data one is work-
ing with, BERT embeddings are contextualized based on
the specific texts you provide. For this approach, we gener-
ate contextualized BERT embeddings using a multilingual
pretrained BERT model (Devlin et al., 2018) for each sam-
ple for each training data partition of the base corpus. We
then use these new BERT embeddings to generate the new
candidate word pairs. Table 2 applies to this approach as
well, but the pool of candidate word pairs may differ due to
the different embeddings used to generate them. Like with
the GloVe approach, this has the benefit of generalizing be-
yond the exact word pair. One drawback of this approach
is the need for a pretrained BERT model. There are multi-
lingual BERT models available, but the largest only covers
104 languages.

4. Experimental Setup
This section describes the experimental settings we use for
evaluating our automatic conversions. This includes a dis-
cussion of the data sets used, the amounts of training data
used to simulate different low-resource conditions, the two
parsers used for training, and information about our train-
ing conditions.

4.1. Data Sets
Limited data can have a negative effect on performance, as
the model may not have seen enough examples to general-
ize well. Being able to leverage additional data to help train

Corpus Total Train Dev Test

GUM 5961 4287 784 890
WSJ 47 287 39 832 5039 2416

Table 3: Number of sentences in each partition of the GUM
and WSJ corpora.

a new dependency parser could help improve parsing per-
formance. However, when that data is inconsistent with the
original training data, problems can be increased instead
of alleviated. One limiting factor is that to do a compar-
ison between data sets, we need a language to have more
than one data set available. This unfortunately excludes the
lowest-resource of low-resource languages.
The data sets chosen for this experiment follow the Uni-
versal Dependencies2 framework. Every data set should be
marked up using a consistent annotation scheme, but some
variation exists. For example, there are different versions
of the Universal Dependencies annotations, and some data
sets are manually created while others are automatically
converted from other treebanks.
For this test case, we only consider English as a proof
of concept, but this approach could easily be extended to
actual low-resource languages. For the base corpus, we
use the Georgetown University Multilayer (GUM) corpus
(Zeldes, 2017). For the augment corpus, we use the Wall
Street Journal (WSJ) portion of the Penn Treebank (Taylor
et al., 2003) converted into the conllu format used for
Universal Dependencies data. Information about these two
corpora is shown in Table 3.

4.2. Training Data Amount
The amount of data used when training a parser can affect
its performance. More data often leads to better perfor-
mance, but the rate of improvement can vary depending on
the type of parser. We consider a spectrum of training data
amounts to simulate different low-resource settings. For
this experiment, we use training amount of 250, 500, 1000,
2000, and 4000 sentences.
For each amount, half of the sentences come from the base
corpus (GUM) and half come from the augment corpus
(WSJ). To generalize better, for each training data amount
we sample three times from each corpus. For example,
for the 1000 sentence training amount we sample 500 sen-
tences from the GUM training partition and 500 sentences
from the WSJ training partition. We repeat this process two
more times in order to have three runs to compare for each
training data amount.

4.3. Choice of Parser
The specific architecture of the parser used can interact with
the amount of training data to affect performance. Some
parsers need more training data to generalize well, whereas
others can generalize from less data. In order to explore
how different parsers can affect performance, we consider
two neural-based dependency parsers: Stanford’s Stanza

2https://universaldependencies.org/

https://universaldependencies.org/
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parser Qi et al. (2020), and Vacareanu et al. (2020)’s Pars-
ing as Tagging (PaT) parser.

Neural networks require large amounts of training data, so
neural network-based dependency parsers perform better
with large amounts of data. These same neural parsers are
also known to show a drop in performance when they don’t
have a large training data set relative to rule-based parsers
(Kabiri, p.c.). While this project only considers neural-
based parsers, future work could compare how a rule-based
parser performs in similar low-resource training conditions.

It is also important to note that this project is not about mod-
ifying or improving the dependency parsers themselves.
Rather, we use existing parsers as-is to investigate how data
augmentation and conversion methods can help improve
dependency parsing performance. Hence, we do not expect
to reach or exceed the performance of any newer state-of-
the-art models.

4.3.1. Stanza Parser
Stanza (Qi et al., 2020) is a multilingual open-source
Python NLP toolkit. It features a fully neural text analy-
sis pipeline that supports tokenization, lemmatization, part-
of-speech and morphological tagging, dependency pars-
ing, and named entity recognition. The Stanza dependency
parser is the Bi-LSTM-based deep biaffine neural depen-
dency parser developed by Dozat and Manning (2016) aug-
mented with additional linguistically motivated features.
One new feature predicts the linearization order of two
words in a given language, and the other new feature pre-
dicts the typical distance in linear order between them. This
results in a quadratic algorithm, since it combines the em-
bedding of the modifier with the embedding for each pos-
sible head in the sentence. As we will see, this results in
overall higher and more consistent performance, even with
less training data, but does increase complexity and run-
time.

Dozat and Manning (2016)’s graph-based dependency
parser extends earlier work from Kiperwasser and Gold-
berg (2016). These extensions include a larger network
with more regularization, using a biaffine attention mech-
anism and label classifier instead of an affine one, and re-
ducing the dimensionality of the top recurrent states of the
LSTM by putting them through MLP operations before us-
ing them in the biaffine transformations. These modifica-
tions keep the simplicity of neural approaches while ap-
proaching transition-based parser performance.

4.3.2. Parsing as Tagging (PaT) Parser
The Parsing as Tagging (PaT) parser (Vacareanu et al.,
2020) treats dependency parsing as a sequence model using
a bidirectional LSTM over BERT embeddings. In this case,
the tag that is predicted for each token is the relative posi-
tion of that token’s syntactic head. This reframing of depen-
dency parsing into a sequence tagging task that relies only
on surface information, rather than syntactic structure, sim-
plifies dependency parsing without compromising on per-
formance (at least when plenty of training data is available).
The PaT parser reaches state-of-the-art or comparable on 12
Universal Dependencies languages compared to previous
state-of-the-art performance by Fernández-González and

Gómez-Rodrı́guez (2019). Unlike Stanza, the PaT algo-
rithm is linear, as it predicts the relative position of the head
only based on the embedding of the modifier. As we will
see, while this makes the parser more efficient and quicker
to train, it does need more training data in order to gen-
eralize, because it relies on less information to predict the
head.

4.4. Training Setup
With each parser, we trained each of four conditions
(Unconverted3, Converted-Lexical, Converted-GloVe, and
Converted-BERT) on each of five training data amounts
(250, 500, 1000, 2000, and 4000 sentences). For each train-
ing data amount, we trained three times using three differ-
ent samples from the original training data. We then tested
each of these models on the same original GUM corpus test
partition.

5. Results
This section discusses the results of parsing with both the
Stanza and PaT parsers and includes a short error analysis.

5.1. Evaluation Metrics
In this experiment, we report results for two evaluation
metrics: Unlabeled Attachment Score (UAS) and Labeled
Attachment Score (LAS). Unlabeled Attachment Score is
based solely on correctly identifying the head word and
dependent word without considering the label. Labeled
Attachment Score is based on identifying the head word
and dependent word with the correct label. Based on my
method of identifying and converting potential problems,
which does not change anything about heads or dependents,
we might expect the Unlabeled Attachment Score not to
change. However, due to the architecture of the parsers,
where the prediction of the head position and its label are
modeled jointly, we do see changes in UAS. Statistical sig-
nificance for each condition is calculated based on the me-
dian performing model of the three samples based on LAS.
In addition, since both UAS and LAS are micro-averaged
scores, which may be biased towards more frequent labels,
it would be important for future work to look at the perfor-
mance changes of underrepresented classes.

5.2. Stanza Results
Table 4 shows unlabeled and labeled accuracies using the
Stanza parser.
For UAS, a Converted condition outperforms the Uncon-
verted condition at all training data amounts. Converted-
Lexical is the best performing condition for 250 sentences.
Converted-GloVe is the best performing condition or tied
for the best for 500, 1000, and 4000 sentences. Converted-
BERT is the best performing condition or tied for the best
for 500 and 2000 sentences. This performance is statis-
tically significant for all training data amounts except for
4000 sentences.
For LAS, a Converted condition outperforms the Uncon-
verted condition at all training data amounts. Like with

3The half of the training data from the augment corpus gets
added to the base corpus without any conversions.
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Sentences
Unconverted Converted-Lexical Converted-GloVe Converted-BERT

UAS LAS UAS LAS UAS LAS UAS LAS

250 73.18 ± 1.69 67.69 ± 2.78 75.56 ± 0.79 * 70.71 ± 0.88 * 72.93 ± 1.79 * 66.13 ± 3.57 * 74.09 ± 2.66 * 68.08 ± 4.60 *

500 74.67 ± 2.11 69.50 ± 2.85 76.97 ± 5.63 * 72.48 ± 6.55 * 79.46 ± 0.71 * 75.36 ± 0.67 * 79.46 ± 0.71 * 75.36 ± 0.67 *
1000 73.88 ± 3.97 67.77 ± 6.14 74.06 ± 1.46 * 63.92 ± 1.21 * 76.64 ± 3.62 * 72.21 ± 5.11 * 74.28 ± 1.53 * 69.12 ± 2.43 *

2000 72.03 ± 0.86 66.46 ± 0.77 72.64 ± 1.07 * 64.42 ± 0.67 76.01 ± 4.76 * 71.91 ± 5.49 * 79.74 ± 4.94 * 76.10 ± 5.97 *
4000 75.74 ± 5.69 71.52 ± 6.99 74.75 ± 0.64 67.29 ± 0.53 76.57 ± 5.16 72.41 ± 6.21 * 74.13 ± 1.07 68.59 ± 1.05

Table 4: Accuracy using Stanza. The best condition for each training amount is indicated in bold. * indicates statistical
significance at p < 0.05 between the Converted condition and the Unconverted condition.

UAS, Converted-Lexical is the best performing condition
for 250 sentences, Converted-GloVe is best or tied for best
for 500, 1000, and 4000 sentences, and Converted-BERT is
best or tied for the best for 500 and 2000 sentences. Un-
like with UAS, Converted-Lexical is only statistically sig-
nificant at 250, 500, and 1000 sentences; Converted-GloVe
is statistically significant at all training data amounts; and
Converted-BERT is statistically significant at 250, 500,
1000, and 2000 sentences.

5.3. PaT Results
Table 5 shows the unlabeled and labeled accuracies using
the PaT parser.
For UAS, the Unconverted condition outperforms all Con-
verted conditions for with 1000 sentences—the only condi-
tion across parsers, training data amounts, and evaluation
metrics where the Unconverted condition performs best.
Converted-Lexical is the best performing condition for 500
sentences. Converted-GloVe is the best performing condi-
tion for 4000 sentences. Converted-BERT is the best per-
forming condition for 250 and 2000 sentences. Unlike with
Stanza, few of these conditions are statistically significant.
Only Converted-Lexical for 4000 sentences and Converted-
GloVe for 2000 and 4000 sentences perform significantly
better than the Unconverted condition.

For LAS, Converted-Lexical is the best performing condi-
tion for 1000 sentences. Converted-GloVe is the best per-
forming condition or tied for the best for 500 and 4000
sentences. Converted-BERT is the best performing con-
dition or tied for the best for 250, 500, and 2000 sen-
tences. More conditions show statistical significance with
LAS compared to UAS. For LAS, Converted-Lexical per-
forms significantly better than Unconverted for 500, 1000,
and 2000 sentences, and Converted-GloVe and Converted-
BERT perform significantly better than Unconverted for
2000 sentences.

5.4. Prediction Analysis
We perform a simple prediction analysis on the best models
for each parser. This involves comparing the predictions of
the Unconverted and Converted conditions with the labels
in the gold testing data. The examples reported here only
come from sentences where either the Unconverted or Con-
verted predictions differ from the gold data, but not where
both Unconverted or Converted predictions are incorrect.
This helps us identify where our Converted model uniquely
over- or under-performs relative to the Unconverted model.

For our best Stanza model (Converted-BERT-2000), Ta-
ble 6 shows the relations from gold that were most often in-
correctly predicted in the Unconverted and Converted con-
ditions4. This table only includes those relations that were
predicted incorrectly more than 50 times. Table 7 shows the
same for our best PaT model (Converted-GloVe-4000). We
discuss these prediction errors in more detail in Section 5.5.

5.5. Discussion
The results above show a few trends. First, we find that our
conversions work for both parsers. Going through the pro-
cess of converting the data is worthwhile in many cases. For
Stanza, performing any conversion results in significantly
higher performance in 12/15 cases for UAS and 12/15 cases
for LAS. For PaT, converting the data yields significantly
higher performance in more limited cases—only 3/15 for
UAS and 5/15 for LAS.

Another finding is that in general, matching things
semantically—that is, using word vectors—is better than
a simple lexical match. With Stanza, there is only one
training amount (250 sentences) where Converted-GloVe or
Converted-BERT is not the best performing model. Sim-
ilarly, there are only two training amounts for PaT (500
and 1000 sentences) where Converted-GloVe or Converted-
BERT is not the best performing model. In addition, we
observe that using BERT specifically can yield the best im-
provements. Our overall best Stanza model uses BERT em-
beddings, and our best performing condition across parsers
is a Converted-BERT model for 4/10 training amounts for
UAS5 and 5/10 training amounts for LAS6.

We also see a striking difference between the Stanza and
PaT parsers. Sanza performs consistently across different
training data amounts. The difference in performance for
between the best and worst performing Unconverted condi-
tion with Stanza is 2.56 for UAS and 5.06 for LAS. Contrast
this with the PaT parser, where the difference between the
best and worst performing Unconverted condition with PaT
is 40.5 for UAS and 57.36 for LAS. This is likely due to
the architectures of each parser. As discussed previously,
the Stanza algorithm is more complex, and can generalize
from less data than PaT. Thus, we see PaT lagging in per-
formance in training conditions with less data. However,

4An incorrect prediction for e.g. nmod means that the correct
label in gold is nmod, but our model predicted a different label.

52/5 for Stanza, 2/5 for PaT
62/5 for Stanza, 3/5 for PaT
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Sentences
Unconverted Converted-Lexical Converted-GloVe Converted-BERT

UAS LAS UAS LAS UAS LAS UAS LAS

250 40.63 ± 13.91 17.08 ± 22.51 40.16 ± 13.09 16.57 ± 21.63 39.91 ± 12.67 16.74 ± 21.92 40.67 ± 13.98 17.36 ± 23.00
500 64.32 ± 3.08 50.23 ± 3.92 64.36 ± 3.81 50.67 ± 4.66 * 64.33 ± 3.60 50.76 ± 4.12 64.33 ± 3.60 50.76 ± 4.12
1000 72.33 ± 1.50 61.52 ± 2.90 72.30 ± 1.66 61.58 ± 3.61 * 72.09 ± 1.38 61.24 ± 2.67 71.86 ± 1.73 60.99 ± 3.12

2000 74.64 ± 0.63 66.29 ± 0.46 74.19 ± 0.93 65.18 ± 2.30 * 74.73 ± 1.76 * 66.40 ± 3.32 * 74.77 ± 1.20 66.97 ± 1.07 *
4000 81.13 ± 0.51 74.44 ± 1.19 81.25 ± 0.39 * 74.20 ± 1.54 81.64 ± 0.64 * 74.73 ± 1.76 81.19 ± 0.84 74.26 ± 1.65

Table 5: Accuracy using PaT. The best condition for each training amount is indicated in bold. * indicates statistical
significance at p < 0.05 between the Converted condition and the Unconverted condition.

Gold Incorrect Most Frequent CountRelation Predictions Incorrect Label

Unconverted

acl 67 advcl 26
acl:relcl 50 advcl 29

advcl 95 xcomp 26
amod 85 compound 40
appos 73 nmod 29

compound 127 nmod 54
conj 184 nmod 37
flat 99 compound 35

nmod 96 obl 51
nsubj 59 obj 18

nsubj:pass 68 nsubj 55
obj 62 dobj 32
obl 207 nmod 173
root 89 advcl 28

Converted

conj 51 appos 32
nmod 84 obl 55
nsubj 84 nsubj:pass 30
obj 61 obl 32
obl 65 nmod 53

Table 6: Incorrect predictions with our best Stanza model
(Converted-BERT-2000) compared to the Unconverted
model with the same training amount and random seed.
Gold Relation is the label in the gold testing data that is
incorrectly predicted with our models over 50 times. In-
correct Predictions is the total number of times our model
incorrectly predicted that relation. Most Frequent Incor-
rect Label is the most common label chosen for the incor-
rectly predicted gold label. Count is the number of times
our model predicts that most frequent incorect label.

we also see that in higher-data conditions (2000 and 4000
sentences), PaT begins to outperform Stanza.
Finally, our prediction analysis reveals areas where our
Converted models improve over the Unconverted models
and some remaining areas for improvement. Compared
with the Unconverted models, we observe a reduction in
the number of relation types predicted incorrectly with the
Converted models. Stanza Unconverted predicts 14 rela-
tions incorrectly more than 50 times, and PaT Unconverted

Gold Incorrect Most Frequent CountRelation Predictions Incorrect Label

Unconverted

acl 56 advcl 19
advcl 75 acl 17
amod 114 compound 48
appos 72 conj 27

compound 255 amod 74
conj 79 compound 16
flat 176 conj 58

nmod 241 obl 166
nsubj 107 obj 31
obl 160 nmod 77
root 77 conj 33

Converted

compound 176 amod 117
nmod 145 obl 103
nsubj 92 conj 27
obj 117 conj 24
root 60 advcl 16

Table 7: Incorrect predictions with our best PaT model
(Converted-GloVe-4000) compared to the Unconverted
model with the same training amount and random seed.
Gold Relation is the label in the gold testing data that is
incorrectly predicted with our models over 50 times. In-
correct Predictions is the total number of times our model
incorrectly predicted that relation. Most Frequent Incor-
rect Label is the most common label chosen for the incor-
rectly predicted gold label. Count is the number of times
our model predicts that most frequent incorect label.

predicts 11 relations incorrectly more than 50 times. Both
Converted models reduce this down to only five relations
incorrectly predicted more than 50 times. We also see a re-
duction in the overall count of incorrect predictions for each
relation type, and we notice no cases where the Converted
model incorrectly predicts a relation more than 50 times
where the Unconverted model does not. That is, the Con-
verted models do not seem to be introducing new classes of
errors. However, there are still areas to improve. There are
some labels (notably nmod, nsubj, and obj) that our best
models with both parsers incorrectly predict more than 50
times. One explanation for these errors is that the relations
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involved are syntactically and semantically similar. For
example, nsubj and nsubj:pass both involve clausal
subjects, nmod and obl both involve nominal phrase mod-
ifiers, and compound and amod both involve multiword
expressions.
The results of our parsing experiment and prediction analy-
sis suggest that applying our simple, automatic conversion
methods to the training data can result in a model that out-
performs a simpler model that does not utilize our proposed
methods with very little additional time or labor needed.

6. Conclusion
We proposed a method for automatically identifying mis-
matches between two Universal Dependencies dependency
parsing corpora and proposed three related approaches for
automatically converting the data. We then retrained two
different dependency parsers with the converted data to
evaluate how these methods perform compared to an un-
converted baseline with different amounts of training data
to simulate low-resource conditions. Despite differences
between the two parsers, we find that our approaches yield
significantly better performance in many conditions com-
pared to the baseline. This work suggests that automatically
identifying and converting mismatches between two data
sets can serve as a simple way to augment limited training
data and improve dependency parsing performance in low-
resource scenarios.
For reproducibility, we release the code behind this work
as open source. The software is available at this URL:
https://github.com/clulab/releases/
tree/master/lrec2022-parsing.
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