
Named Entity Recognition for Telugu using LSTM-CRF

Aniketh Janardhan Reddy, Monica Adusumilli,
Sai Kiranmai Gorla, Lalita Bhanu Murthy Neti and Aruna Malapati

Birla Institute of Technology and Science, Pilani, Hyderabad, India
{f20140096,f20140005,p2013531,bhanu,arunam}@hyderabad.bits-pilani.ac.in

Abstract
Named Entity Recognition (NER) for Telugu is a challenging task due to the characteristic features of the language. Earlier studies
have made use of handcrafted features and gazetteers for identifying named entities (NEs). In this paper, we present a Long Short-Term
Memory (LSTM) - Conditional Random Fields (CRF) based approach that does not use any handcrafted features or gazetteers. The
results are compared to those of traditional classifiers like support vector machines (SVMs) and CRFs. The LSTM-CRF classifier
performs significantly better than both of them, achieving an F-measure of 85.13%.

Keywords:Named Entity Recognition, LSTM, CRF, Word Embeddings

1. Introduction
NER is an interesting task in Natural Language Processing
(NLP) that identifies NEs such as the name of a person, lo-
cation or organization in a sentence. NER has numerous
applications in NLP and is used while performing text min-
ing, machine translation, question answering, indexing for
information retrieval, automatic summarization, etc.
Telugu is one of the most spoken Indian languages and is
highly inflectional and agglutinating in nature. It has one of
the richest and most complex set of linguistic rules result-
ing in complex word forms. The task of building an NER
model for Telugu language has some linguistic challenges
like the unavailability of annotated corpora, no gazetteer
lists, no capitalization, spelling variations, free word order,
etc. NEs in Telugu cannot be identified by capitalization as
is the case with English and most European languages. In-
flectional suffixes can be added either to the root or to the
stem of Telugu words and common nouns can also be NEs
in certain cases. The words are also more diverse in nature.
NER in Telugu is challenging because of these difficulties.
In this paper, we develop a classifier which performs NER
in Telugu using LSTM and CRFs. We then compare the
performance of our approach with those of popular tools
like YamCha and CRF++. The annotated data used for our
work has been made available for public use.
In Section 2. we discuss related work and in Section 3. we
discuss our LSTM-CRF classifier. We describe the other
classifiers we tested in Section 4. and our experiments, re-
sults and their analysis is documented in Section 5. Finally,
we conclude in Section 6.

2. Related Work
State-of-the-art NER models are based on LSTMs. They
overcome the problems associated with approaches that use
handcrafted rules or gazetteers. These approaches are labor
intensive and inflexible. Lample et al. (Lample et al., 2016)
proposed a language independent LSTM-CRF based clas-
sifier which used pretrained word embeddings, character-
level embeddings and contextual word representations. A
CRF is finally used to perform classification. Our archi-
tecture is very similar to the one proposed by Lample et
al. They also proposed another LSTM-based architecture
inspired by shift-reduce parsers in the same paper. Chiu

et al.(Chiu and Nichols, 2015) proposed a bidirectional
LSTM (Bi-LSTM) and a Convolution Neural Network hy-
brid model that automatically detects word and character-
level features. They reported an F-measure of 91.62% on
the CoNLL-2003 dataset.

Considerable amount of work has been done on NER in
other Indian languages such as Bengali and Hindi. Ekbal et
al. (Ekbal and Bandyopadhyay, 2008) developed an NER
model for Bengali and Hindi using SVMs. It uses various
features which are computed based on both the word and
the context in which it occurs. They reported F-measures of
84.15% and 77.17% for Bengali and Hindi respectively. In
another paper(Ekbal and Bandyopadhyay, 2009), they pro-
posed a CRF-based NER model for Bengali and Hindi and
obtained F-measures of 83.89% for Bengali and 80.93%
for Hindi. A CRF-based NER model which can handle
nested NEs has been developed for Tamil(Vijayakrishna
and Devi, 2008), another Dravidian language. Athavale
et al.(Athavale et al., 2016) used a Bi-LSTM which took
Word2Vec embeddings and the parts-of-speech (POS) tags
of the tokens as input and output the NE tag. They reported
an accuracy of 77.48% for NER in Hindi.

Srikanth and Murthy(Srikanth and Murthy, 2008) were
some of the first authors to explore NER in Telugu. They
built a two stage classifier which they tested using their own
dataset. In the first stage, they used a CRF to identify nouns.
Then, they developed a rule-based model to identify the
NEs among the nouns. A CRF-based NER model was also
built which made use of handcrafted features. Gazetteers
were used to enhance the performance of their classifiers.
Overall F-measures between 80% and 97%were reported in
various experiments. It is interesting to note that the higher
scores were obtained only upon using gazetteer lists. Their
work also has several limitations. Firstly, they use hand-
crafted rules, features and gazetteers to performNERwhich
is both labor intensive and inflexible. Secondly, their clas-
sifier is only capable of identifying NEs which are one word
long. Finally, neither their code nor their dataset has been
made available publicly. Our work overcomes all of these
problems. Shishtla et.al(Shishtla et al., 2008) built a CRF
based NER model with language independent and depen-
dent features and reported an F-measure of 44.89%.



3. The LSTM-CRF Classifier
We briefly introduce LSTMs, CRFs and other relevant con-
cepts before proceeding to explain the architecture of the
classifier we built.

3.1. Long Short-Term Memory (LSTM)
Recurrent Neural Networks (RNNs) are neural networks
with self loops and are commonly used for building clas-
sifiers which operate on sequential data. In theory, vanilla
RNNs are capable of learning long term dependencies be-
tween data points. But, it has been shown by Bengio et
al. (Bengio et al., 1994) that they often fail to learn them due
to vanishing gradients. LSTMs are a class of RNNs which
were proposed by Hochreiter et al. (Hochreiter and Schmid-
huber, 1997) to overcome this problem and are adept at
learning long term dependencies. An LSTM takes sequen-
tial data of the form (x0, x1, x2...xn) as input and gives a
sequential output of the form (y0, y1, y2...yn). LSTMs have
an internal state which is updatedwhenever a new data point
is input. This update is controlled by two gates. The forget
gate determines how much of the previous state’s informa-
tion is to be retained. The input gate controls how much the
state changes due to the new input. The LSTM finally gives
an output which is determined by the output gate based on
the internal state.

3.2. Character-Level Word Embeddings
The structure of a word is useful in determining if it is a
named entity. For example, many Indian cities such as Hy-
derabad and Ahmadabad end with -bad. This structure can
be captured through character-level word embeddings (Ling
et al., 2015). Initially each character is assigned an n-
dimensional vector. Each token is broken up into its in-
dividual characters which are then mapped to their corre-
sponding vectors. Thus, a token is converted to a sequence
of vectors which is then fed to a Bi-LSTM. A Bi-LSTM
is composed of two LSTMs which process a sequence in
opposite orders. The final states of both LSTMs are then
concatenated to obtain the final character-level embedding
of the token.

3.3. Generating Contextual Representations of
Words using LSTMs

To make an output decision, an LSTM must store informa-
tion about the previous data points. In the case of NER, the
LSTM stores information about the tokens which occurred
before the current token, thereby storing a contextual repre-
sentation of the current token. In order to get both the left
and right contexts we use a Bi-LSTM and then concatenate
the internal states of the forward and backward LSTMs after
processing the given token to get the token’s final contex-
tual representation.

3.4. Linear Chain Conditional Random Fields
(CRFs)

When a conventional classifier is used to recognize NEs,
each tagging decision occurs independent of the others. En-
tities can be spread across multiple tokens. For example, a
person’s name can be composed of two tokens consisting
of his first and last names. There are also constraints on

Figure 1: Main steps of our approach

the occurrences of certain tags. For example, a sequence of
I-xx tags cannot occur without a corresponding B-xx tag be-
fore them. It is also highly unlikely for entities to be present
one after the other without separators between them. These
observations make it clear that a tagging decision must be
made after taking into account the tagging decisions for all
the other tokens in the sequence.

Using CRFs (Lafferty, 2001), tagging is done for the entire
sequence simultaneously and each tagging decision is de-
pendent on the others. We use a linear chain CRF which
considers dependencies between adjacent words (linear de-
pendencies). Each token ti in a sequence of the form
(t0, t1, t2...tn) has a corresponding m-dimensional vector
si wherem is the number of possible tags. Anotherm×m
transition matrix A is used to capture the linear dependen-
cies between the tagging decisions. Aij of the matrix is in-
dicative of the probability of the ith tag being followed by
the jth tag. s and e are two m-dimensional vectors whose
values represent the confidence of a tagging sequence start-
ing and ending with a given tag respectively. Each tagging
sequence of the form (y0, y1, y2...yn) assigned to the token
sequence is scored as:

Score(y0, y1, y2...yn) = s[y0] +
∑n

i=0 si[yi] +∑n−1
i=0 A[yi, yi+1] + e[yn]

The tagging sequence which has the maximum Score is
output by the CRF based classifier. While training, we seek
to minimize the negative log of the probability of the correct
tagging sequence Ỹ . Hence our loss function is:

Loss = −log(P (Ỹ ))

where P (Ỹ ) = eScore(Ỹ )∑
y0,...,yn

eScore(y0,...,yn)

During backpropagation, the various weights and embed-
dings of the model are tuned to minimize the Loss.



3.5. Neural Network Architecture
Figure 1 gives an overview of our architecture. Our classi-
fier makes use of global word embeddings generated from
raw text so as to capture the context of words in unseen
text. In specific, we use the 300-dimensional fastText pre-
trained Teluguword embeddings provided by Facebook Re-
search1 (Bojanowski et al., 2016). We also generate 200-
dimensional character-level embeddings for each token as
described in Section 3.2.. The global word embeddings and
the character-level embeddings are then concatenated for
each token to represent them as vectors. Using the train-
ing data now represented in the form of sequences of vec-
tors, 600-dimensional contextual word embeddings are gen-
erated for each token as described in 3.3.. The contextual
word embeddings are then used to compute the scores for
a word using a 600 × m weight matrix W and an m di-
mensional bias vector b where m is the number of classes.

The score for each word is an m dimensional vector given
by:
s = W ·h+ b, where h is the contextual embedding of that
word

After getting the scores for an entire sequence, we use a lin-
ear chain CRF to make the tagging decisions for the whole
sequence as described in Section 3.4..
Our code and dataset is made publicly available for repro-
duction of results and future research2. Parts of the code
were adapted from the code written by Guillaume Gen-
thial3.

4. Other Classifiers
We compare our classifier with two other language inde-
pendent classifiers which are publicly available, YamCha4
and CRF++5. This section gives a brief description of these
tools. We tried outmany configurations for these classifiers.
Here, we describe the ones which performed the best.

4.1. YamCha
YamCha is an SVM-based open source toolkit which can
perform many NLP tasks such as POS tagging, NER, base
noun phrase chunking and text chunking. The features to
be used and the parsing direction can be customized. In our
study, we use YamCha with the following combination of
static and dynamic features:

1. Current token and its POS tag

2. The two tokens preceding and the two tokens follow-
ing the current token along with their POS tags.

3. NE tags of the two previous tokens

For each token, the aforementioned features are generated
and supplied to YamCha for training. While testing, the tags

1https://github.com/facebookresearch/fastText/blob/master/
pretrained-vectors.md

2https://github.com/anikethjr/NER_Telugu
3https://github.com/guillaumegenthial/sequence_tagging
4http://chasen.org/~taku/software/yamcha
5https://taku910.github.io/crfpp/

assigned by the classifier to the previous two tokens are used
as the last feature.

4.2. CRF++
CRF++ is an open source implementation of CRFs for seg-
menting or labeling sequential data. It is also language in-
dependent and like YamCha, it can be used for performing
several NLP tasks. CRF++ is written in C++ and it uses
the popular Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm to perform training. We used
the following features in our study:

1. Unigram Features:

(a) The current token, the two tokens which precede
it and the two tokens which follow it.

(b) Combination of the current token and the token
before it.

(c) Combination of the current token and the token
after it.

(d) The POS tags of the current token, the two tokens
which precede it and the two tokens which follow
it.

(e) Combination of the POS tags of the two tokens
which precede the current token.

(f) Combination of the POS tags of the current token
and the token which precedes it.

(g) Combination of the POS tags of the current token
and the token which follows it.

(h) Combination of the POS tags of the two tokens
which follow the current token.

(i) Combination of the POS tags of the current token
and the two tokens which precede it.

(j) Combination of the POS tags of the current token,
the token which precedes it and the token which
follows it.

(k) Combination of the POS tags of the current token
and the two tokens which follow it.

2. Bigram Feature - Combination of the the current token
and the NE tag of the previous token.

These features are generated for each input token and
CRF++ uses them for training an NE tagger.

5. Experiments
5.1. The Corpus
We accumulated the Telugu text by crawling Telugu news-
paper websites. It was then manually tagged by us. NEs
belonging to four classes, namely, person (PERSON), lo-
cation (LOC), organization (ORG) and other miscellaneous
NEs (MISC) were manually identified and tagged using the
standard IOB scheme. The data consists of 47966 tokens
out of which 6260 are NEs and Table 2 shows the number
of NEs belonging to each of the four classes. The tagset is
given in Table 1 below.



Named Entity Tag Example
PERSON

సǙృ¨ B-PERSON

ఇ�Ð I-PERSON
(Smriti Irani)

LOC
ƒÎ B-LOC

అğ¯� I-LOC
(Saudi Arabia)

ORG
¯�ǝ B-ORG

ఇ¬ǢȉటూǚƟ I-ORG

అƪ I-ORG

ëuǔలÄ I-ORG

అంơ I-ORG

ĂౖƨǢ I-ORG
(Birla Institute of Technology and
Science)

MISC
రూ. B-MISC

35 I-MISC

లǩȰ I-MISC
(Rs. 35 lac)

Table 1: Named Entity Tagset

Class Number of NEs
PERSON 1563
LOC 1915
ORG 778
MISC 2004
Total 6260

Table 2: Distribution of NEs

5.2. Training

Our classifier is trained using the Adam optimizer (Kingma
and Ba, 2014) with the learning rate equal to 0.001 and the
learning rate decay factor as 0.9. The batch size was equal
to 20 and we also set a dropout rate of 0.5 while training.
The training was carried out for 20 epochs.

5.3. Evaluation

10 sets of training and testing data were generated using the
annotated corpus. 80% of the sentences present in the cor-
pus comprise the training set and the remaining 20% com-
prise the test set. This split is done randomly and sentences
are not repeated in the training and testing data. We then
use these 10 splits to evaluate our classifier. The standard

Approach Precision Recall F-measure
YamCha 80.61 76.07 78.27
CRF++ 80.75 74.92 77.72

LSTM-CRF 87.15 83.22 85.13

Table 3: Overall metrics for the various classifiers

Class Yamcha CRF++ LSTM-CRF
PERSON 76.61 76.08 80.07
LOC 81.21 80.52 88.11
ORG 54.32 55.86 68.02
MISC 82.10 84.56 92.68

Table 4: Comparison of the F-measures of the classifiers for
each class of named entities

CoNLL evaluation script6 is used to compute various eval-
uation metrics.

5.4. Results and Analysis
Tables 3 and 4 show the results we obtained. These met-
rics are computed after averaging the metrics over the 10
runs. The LSTM-CRF classifier clearly outperforms the
other classifiers based on all the metrics. In fact, its per-
formance is greater by approximately 7% based on overall
F-measure. This is because of three main reasons. Firstly,
the use of CRFs makes tagging more accurate because the
classifier is able to discern the dependencies which exist
between the individual tags. These dependencies can not
be captured by an SVM, thereby lowering its performance.
Secondly, character-level embeddings allow the classifier
to learn the general form of an NE. Hence, our classifier
is able to handle unknown NEs because it is able to iden-
tify them based on their structure. This cannot be accom-
plished when using tools like CRF++. Finally, Bi-LSTMs
are great at learning long term dependencies and further
augment the classifier’s ability to learn dependencies be-
tween tokens which is not possible when using either SVMs
or CRF++.

6. Conclusion
In this paper, we described an LSTM-CRF based approach
for NER in Telugu. The approach makes use of pretrained
fastText embeddings and character-level embeddings gen-
erated using a Bi-LSTM in order to learn contextual word
embeddings using another Bi-LSTM. A linear chain CRF
is finally used to perform the tagging based on the contex-
tual word embeddings. The use of various word embed-
dings and a CRF allows the classifier to capture more con-
textual information and tagging dependencies respectively.
The overall F-measure achieved using the LSTM-CRF clas-
sifier is approximately 7% greater than the F-measure ob-
tained using SVM and CRF.

7. Bibliographical References
Athavale, V., Bharadwaj, S., Pamecha, M., Prabhu, A., and
Shrivastava, M. (2016). Towards deep learning in hindi

6https://www.clips.uantwerpen.be/conll2003/ner/



ner: An approach to tackle the labelled data scarcity.
arXiv preprint arXiv:1610.09756.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning
long-term dependencies with gradient descent is difficult.
Trans. Neur. Netw., 5(2):157–166, March.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword informa-
tion. arXiv preprint arXiv:1607.04606.

Chiu, J. P. and Nichols, E. (2015). Named entity
recognition with bidirectional lstm-cnns. arXiv preprint
arXiv:1511.08308.

Ekbal, A. and Bandyopadhyay, S. (2008). Bengali named
entity recognition using support vector machine. In IJC-
NLP, pages 51–58.

Ekbal, A. and Bandyopadhyay, S. (2009). A conditional
random field approach for named entity recognition in
bengali and hindi. Linguistic Issues in Language Tech-
nology, 2(1):1–44.

Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., 9(8):1735–1780,
November.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.

Lafferty, J. (2001). Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
pages 282–289. Morgan Kaufmann.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures for named
entity recognition. CoRR, abs/1603.01360.

Ling, W., Dyer, C., Black, A. W., Trancoso, I., Ferman-
dez, R., Amir, S., Marujo, L., and Luís, T. (2015). Find-
ing function in form: Compositional character models for
open vocabulary word representation. In EMNLP.

Shishtla, P. M., Gali, K., Pingali, P., and Varma, V. (2008).
Experiments in telugu ner: A conditional random field
approach. In Proceedings of the IJCNLP-08 Workshop
on Named Entity Recognition for South and South East
Asian Languages.

Srikanth, P. and Murthy, K. N. (2008). Named entity
recognition for telugu. In IJCNLP, pages 41–50.

Vijayakrishna, R. and Devi, S. L. (2008). Domain focused
named entity recognizer for tamil using conditional ran-
dom fields. In IJCNLP, pages 59–66.


	Introduction
	Related Work
	The LSTM-CRF Classifier
	Long Short-Term Memory (LSTM)
	Character-Level Word Embeddings
	Generating Contextual Representations of Words using LSTMs
	Linear Chain Conditional Random Fields (CRFs)
	Neural Network Architecture

	Other Classifiers
	YamCha
	CRF++

	Experiments
	The Corpus
	Training
	Evaluation
	Results and Analysis

	Conclusion
	Bibliographical References

