
Distributed Corpus Search

Radoslav Rábara, Pavel Rychlý, Ondřej Herman
Masaryk University, Faculty of Informatics

Botanická 68a, 602 00 Brno
{xrabara,pary,xherman1}@fi.muni.cz

Abstract
Available amount of linguistic data raises fast and so do the processing requIrements. The current trend is towards parallel and distributed
systems, but corpus management systems have been slow to follow it. In this article, we describe the work in progress distributed corpus
management system using a large cluster of commodity machines. The implementation is based on the Manatee corpus management
system and written in the Go language. Currently, the implemented features are query evaluation, concordance building, concordance
sorting and frequency distribution calculation. We evaluate the performance of the distributed system on a cluster of 65 commodity
computers and compare it to the old implementation of Manatee. The performance increase for the distributed evaluation in the
concordance creation task ranges from 2.4 to 69.2 compared to the old system, from 56 to 305 times for the concordance sorting task
and from 27 to 614 for the frequency distribution calculation. The results show that the system scales very well.

Keywords: corpus, parallel, distributed, concordance

1. Introduction
Every year, the amount of text produced and stored in-
creases, and so do the requirements to process and search it.
Some of the largest corpora we build for use in Sketch En-
gine (Kilgarriff et al., 2014) now take months to compile,
and their searching leaves a lot to be desired even on today’s
state-of-art machines, mainly due to lack of parallelization
and storage bottlenecks.
Building on the approach described in (Rábara et al., 2017),
where we report on our experiments in acceleration of cor-
pus search using shared-memory multiprocessor machines,
we developed an extension to the Manatee corpus manage-
ment system (Rychlỳ, 2007) which allows us to distribute
corpus operations over a cluster of commodity computers.

2. System description
The distributed system is based on the reimplementation of
the Manatee corpus manager in Go.
We employ the MapReduce model, where machines in a
cluster work on a local part of the data in isolation – map it
to a partial result. These results are then propagated through
the cluster and collated or reduced to obtain the final result.
Our architecture uses multiple servers and a single client.
The client schedules the work to be done, manages the
servers, and handles interactions with the user. The servers
are where the data is stored and where the performance in-
tensive processing is carried out. The machines within the
cluster communicate using a custom HTTP based proto-
col. The requests transmitted to the servers are encoded as
JSON, while the much larger results are returned in a denser
and more performant Protocol Buffers based format, as the
encoding and decoding steps turned out to be a noticeable
performance bottleneck.

2.1. Implemented features
Currently, only the most fundamental, but at the same time
most difficult to implement, operations have been imple-
mented. These are query evaluation, concordance building,
sorting and frequency distribution calculations.

Corpus compilation is done in the same way as in the cur-
rent Manatee system, except that each of the servers com-
piles its own local part of the corpus. Currently, we do not
build any distributed indices and each part of the distributed
corpus is a standard Manatee compatible corpus on its own.
Uploading of the corpora to the servers is done out-of-band
without any intervention of the system itself by standard
UNIX tools.
Some important functionality has not been implemented
yet, such as fault tolerance and fail-over, as these were
deemed unnecessary in a proof-of concept system. Imple-
menting some functions, such as the Word Sketch, should
be straightforward, while other functions, such as the-
saurus, might end up being calculated with the help of the
servers, but ultimately stored on and queried by the client
itself.

2.1.1. Concordance building
Evaluating Corpus Query Language queries and building
the resulting concordance is done similarly as in the orig-
inal implementation. In the original implementation, con-
cordances are stored as lists of positions in the corpus. The
textual form is generated on the fly when user requests a
specific part of the concordance. Similarly, sorting and fil-
tering operations manipulate numerical representations of
tokens. This is not possible in the distributed implementa-
tion, as the other workers have no knowledge of lexicons
and contents of the other parts of the corpus. Therefore, we
build the textual representation of concordance, including
the contexts, immediately on the servers. The final result is
obtained by concatenating the partial results on the client.

2.1.2. Concordance sorting
It is often required for the concordance to be sorted by some
criteria. We handle this case by distributed merge-sort. Par-
tial results are generated and sorted on the servers and then
streamed the client where the last merging pass is carried
out. An optimization which avoids transferring all the par-
tial results is in place for the case where a specific page of
the concordance is requested. We build a sort index on each



Query Result size C++ implementation Go implementation
asynchronous synchronous cluster single machine

[word="work.*ing"] 3,696,606 14.62 20.04 0.99 37.19
[word="confus.*"] 702,436 14.88 18.24 0.29 34.89
[word="(?i)confus.*"] 731,452 25.44 34.51 0.76 43.63
[lc=".*ing" &
tag="VVG"]

231,346,778 61.10 242.51 5.01 222.76

[lemma_lc="good"]
[lc="plan"]

20,804 6.18 6.27 0.46 18.94

[word=".*ing"] 371,767,766 240.00 626.94 4.18 241.77
[tag="JJ"]
[lemma="plan"]

553,724 3.18 18.21 1.33 15.74

"some" [tag="NN"] 5,107,984 3.28 36.14 1.46 22.72
[lc=".*ing" &
tag!="VVG"]

141,174,215 61.75 229.08 5.84 281.31

[tag="DT"][lc=".*ly"]
[lc=".*ing"]
[word="[A-Z].*"]

54,957 334.01 more than 3600 32.88 more than 3600

[tag="DT"][lc=".*ly"]
[lc=".*ing"]
[word="[A-Z].*" &
tag!="P.*"]

29,053 344.57 more than 3600 35.44 more than 3600

Table 1: Concordance building performance

Query C++ implementation Go implementation
cluster single machine

[word="Gauss"] 26.89 0.48 26.85
[word="recurrence"] 180.16 1.09 52.00
[word="enjoyment"] 410.08 1.35 123.93
[word="test"] 492.79 3.29 158.38
[word="said"] 266.69 4.51 100.77
[word="a"] more than 3600 s 23.99 more than 3600 s
[word="the"] more than 3600 s 54.73 more than 3600 s

Table 2: Concordance sorting performance

Query Result size C++ implementation Go implementation
cluster single machine

[word="Gauss"] 497 17.01 0.36 12.80
[word="recurrence"] 1,580 159.32 0.33 31.90
[word="enjoyment"] 4,841 361.91 0.59 101.56
[word="test"] 33,100 482.94 3.67 138.39
[word="said"] 208,676 147.50 5.29 67.25
[word="a"] 1,700,427 576.39 15.42 136.90
[word="the"] 3,716,817 1273.01 28.86 621.96

Table 3: Frequency distribution performance



of the servers, which speeds up random accesses to the local
sorted concordance. The client then merges the partial sort
indices to obtain a global index, which can be queried to ob-
tain the location of the requested concordance lines within
the cluster. As the concordance is already in a textual form,
it is not necessary to perform additional lookups of the sort-
ing keys in the corpus. The trade-off is larger amount of
data that needs to be transferred between the workers. The
merging step on the client is the bottleneck of this opera-
tion. The performance is strongly affected by the transfer
and decoding of the data coming from the clients, so we
only retrieve the pages of the partial result necessary to dis-
play the current final result page. To speed up the decoding,
we chose a dense binary-based representation built on the
Protocol Buffers toolkit.

2.1.3. Frequency distribution
The frequency distribution feature is used to generate vari-
ous kinds of histograms or contingency tables, such as the
counts of context words which appear at a particular po-
sition with respect to a CQL query. This is a demanding
operation, as it might be necessary to transfer lot of data
between the server and the client. Multiple context features
can be specified and the number of values of each of them
can be as large as the size of the lexicon, therefore the result
size can grow exponentially as additional context features
are added. The frequency distribution can be obtained in
shorter time with the distributed architecture, but the max-
imum allowable size is still limited by the available mem-
ory of the client. The partial histograms are calculated and
sorted on every server and then transferred to the client,
where they are combined to obtain the complete distribu-
tion. To speed up the

3. Performance evaluation
3.1. Hardware and software environment
The tests were carried out on a cluster consisting of 65
diverse computers. Each of them configured with 16 GB
RAM and Ivy Bridge or Haswell Intel Core i5 4-core pro-
cessor, depending on the particular machine. These ma-
chines are standard desktop computers accessible by stu-
dents for general use in computer labs, so we cannot claim
that the environment is free from external influences, but
we found that the results during off-hours are consistent and
repeatable. The operating system used was Fedora Linux.

3.2. Evaluation corpus
The corpus we used to evaluate the system is enTenTen12
from our TenTen family of Web corpora (Jakubíček et al.,
2013). It is an English corpus consisting of approximately
13 billion tokens. Each of the 65 machines processed a part
of the corpus with 200 million tokens stored on its local
hard-disk.

3.3. Results
3.3.1. Concordance building
The Table 1 shows the time in seconds which was necessary
to compute the concordance for a few selected queries from
our test suite. Each of the concordance lines contains the
text representation of the keyword and at most 40 characters

to the left and at most 40 characters to the right, including
paragraph boundaries and a document identificator.

This benchmark tests the raw speed of the mostly sequen-
tial index reads and the construction of the textual concor-
dance representation, which utilizes the lexicons and the
attribute text. These two operations are seek-intensive, but
well-behaved with respect to the caching behavior.

We measured the performance of the current C++ imple-
mentation in two modes. In asynchronous mode, the time
needed for the retrieval of the first 20 rows is given. This
represents the time necessary to serve the first page of re-
sults to the user and approximates the latency of the system.

In synchronous mode, we waited until the whole text rep-
resentation of the concordance had been constructed.

The asynchronous mode is not significantly faster com-
pared to the synchronous mode, relative to the amount of
result rows. This is because after the first 20 lines have
been processed, lexicons and large parts of attribute texts
are cached in system memory, so generating the rest of the
result is much less expensive.

Performance of the distributed implementation was mea-
sured on the 65 worker cluster in one case and on a single
worker in the second case. Asynchronous query evalua-
tion has not been implemented in this system – the results
need to be combined from the different workers as their or-
der and location on the servers is not known beforehand,
but we would still like to preserve their order in the face
of indeterminism. The speedup from the distributed imple-
mentation varies from 2.4 to 69.2 when evaluated over the
whole test suite.

The performance difference between the new implementa-
tion and the current implementation on a single machine is
caused by optimizing the new implementation for complex
queries with large result sizes, on the order of 5 % of the
whole corpus. These issues have been largely eliminated
in subsequent versions of the software, but we didn’t have
the opportunity to reevaluate the performance on the cluster
yet.

On a per-processor basis, the distributed system is less ef-
ficient by design, as the lexicons present on each of the
servers have significant overlap, but the total amount of
memory that can be used to cache the data is much larger.
As the working sets are smaller, every processor can be uti-
lized better, as there are less cache spills.

3.3.2. Concordance sort
The Table 2 shows the time in seconds necessary to evaluate
a query, sort the result and generate a textual representation
of a concordance for a given query. The concordance was
sorted using the three lowercased words to the right of the
keyword as the key. As the performance of query evalua-
tion has been examined in the previous section, the queries
chosen for the evaluation consist of a single word to match
each, as only the bounds of every match are used in the sub-
sequent step. The structure of the query itself matters little.
so We chose the words by their frequency, which is listed in
the Table 4, to account for the various possible result sizes.



Query Frequency

[word="Gauss"] 2,132
[word="recurrence"] 28,927
[word="enjoyment"] 157,287
[word="test"] 1,625,427
[word="said"] 10,842,497
[word="a"] 241,926,311
[word="the"] 547,226,436

Table 4: Query result sizes

The speedup ranges from 56 to 305 compared to the current
implementation and from 1.0 to 3.5 when running on a sin-
gle machine, excluding the operations which took too long
to complete. The result for the query [word="Gauss"]
takes almost the same time for the current and the new im-
plementation, even though the new implementation uses
multiple cores on every machine. This is because of the
low-level inefficiencies of the new implementation. Com-
pared to the concordance building benchmark, the new im-
plementation is able to catch up because the sorting step
can be more easily parallelized.

3.3.3. Frequency distribution
The Table 3 shows the time in seconds necessary to evaluate
a query and generate the frequency distribution with respect
to a single token immediately to the right.
The speedup between the current and new implementations
ranges from 27 to 614 and from 1.4 to 5.0 when a single
machine is used. The performance increases for queries
with large result sets are limited by the large amount of data
which needs to be transferred from the servers to the client
and by the merging step carried out on it. Inserting another
layer of workers to help with partial result merging between
the servers and the client could help to decrease the total
time necessary, at the cost of a possible increase in latency.
However, we would like to avoid a stratified architecture,
as it introduces large amounts of complexity and points of
failure into the system.
The design of the system predates the availability of abun-
dant cheap memory, so it behaves well under memory pres-
sure. When only query evaluation is considered, the system
is not sensitive to memory pressure – indices are processed
in streaming fashion from disk, and memory is only used
for caching. This extends to the distributed implementation.
Frequency distribution, on the other hand, is inherently
memory intensive, and using the current approach it is nec-
essary to store the whole result on the client, which there-
fore needs to have the same amount of memory installed as
if it were the singular machine used in the C++ implemen-
tation. In the future, it might be beneficial to split the fre-
quency distribution functionality into more pragmatic fea-
tures tailored to the specific use cases instead of the generic
and elegant approach used now.

4. Conclusion
We describe the architecture of a proof-of-concept dis-
tributed corpus management system we developed and
evaluated its performance on a large corpus. The results

show that the performance of the distributed system scales
very well and can support large scale corpus processing
without the need for fancy storage arrays and distributed
filesystems. Some queries that cannot currently be feasi-
bly evaluated in interactive scenarios are now within reach,
allowing more detailed analyses.

Acknowledgements
This work has been partly supported by the Ministry
of Education of CR within the LINDAT-Clarin project
LM2015071 and by the Grant Agency of CR within the
project 18-23891S.

Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlỳ, P., and
Suchomel, V. (2013). The tenten corpus family. In 7th
International Corpus Linguistics Conference CL, pages
125–127.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V.,
Michelfeit, J., Rychlỳ, P., and Suchomel, V. (2014). The
sketch engine: ten years on. Lexicography, 1(1):7–36.

Rábara, R., Rychlý, P., Herman, O., and Jakubíček, M.
(2017). Accelerating corpus search using multiple cores.
In Piotr Bański, et al., editors, Proceedings of the Work-
shop on Challenges in the Management of Large Cor-
pora and Big Data and Natural Language Processing
(CMLC-5+BigNLP) 2017 including the papers from the
Web-as-Corpus (WAC-XI) guest section, pages 30–34,
Mannheim. Institut für Deutsche Sprache.

Rychlỳ, P. (2007). Manatee/bonito-a modular corpus man-
ager. In 1st Workshop on Recent Advances in Slavonic
Natural Language Processing, pages 65–70.


	Introduction
	System description
	Implemented features
	Concordance building
	Concordance sorting
	Frequency distribution


	Performance evaluation
	Hardware and software environment
	Evaluation corpus
	Results
	Concordance building
	Concordance sort
	Frequency distribution


	Conclusion

