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Abstract
In this paper we inspect the intermediate sentence representation in the multilingual attention-based NMT system proposed by Ha et al.
(2016). We ask the question of how well the NMT system learns a shared representation across multiple languages, as such a shared
representation is an important prerequisite for zero-shot translation. To this end we examine whether the sentence representation is inde-
pendent of the individual languages involved in translation. Having found the sentence representation in our multilingual NMT system
to be language dependent, we further inspect the sentence representation for the cause of this dependence. We isolated the language
dependent features, and found present a linear correlation between the sentence representation and its source language. Using these
isolated features, we describe a method to manipulate these features, and provide a way to eliminate the language specific differences
between the sentence representations. This could potentially help to remove noise, which is particularly harmful for zero-shot translation.

Keywords: multilingual, neural machine translation, neural representation analysis

1. Introduction
Since the introduction of neural machine translation (NMT)
in recent years, the field of machine translation has made
significant progress. However, current NMT systems re-
quire large amounts of data for training, while there is a
severe lack of data for most language pairs. Therefore, for
such language pairs workarounds such as translation using
a pivot language are needed. To address this problem Ha
et al. (2016) have proposed to extend the originally bilin-
gual attention-based NMT system (Bahdanau et al., 2014)
to multilingual translation. Without changes to the network
architecture, a single NMT system jointly learns to trans-
late from multiple languages to multiple languages. The
attention-based NMT system (Bahdanau et al., 2014) is an
encoder-decoder architecture with an attention layer in be-
tween the encoder and the decoder, and in the translation
process it produces an intermediate sentence representa-
tion, the so called context vectors. By extracting common
semantics across multiple languages, the multilingual NMT
system is expected to learn in its sentence representation
a shared representation across these languages, as a result
significantly reducing the amount of training data needed
for each individual language pair, and in the extreme case
even enabling zero-shot translation. This shared represen-
tation for languages closely resembles an open-domain in-
terlingua, which is a linguistic concept that has often been
considered impossible to achieve. Ha et al. (2016) have
shown in their experiments, that while zero-shot translation
is possible with their approach, there is a significant drop in
translation quality.
With the aim to find clues as to what leads to this drop in
quality, in this paper we examine how well the NMT sys-
tem proposed by Ha et al. (2016) learns a shared repre-
sentation by measuring how independent of the individual
languages the sentence representation in the NMT system
is. Furthermore, having found in our experiments that the
sentence representation is language dependent, we explore
the cause for this dependence. We discover a linear correla-
tion between the sentence representation and the individual

languages, and find a method to manipulate this correlation
in a stable manner. Finally, we demonstrate that through
this manipulation we successfully eliminate language de-
pendent linear differences in the sentence representation.
This manipulation of the sentence representation could po-
tentially provide a way to manipulate the sentence represen-
tation in the process of translation, and effectively reduce
noise for zero-shot translation.

2. Related Work
2.1. Multilingual Attention-Based Translation
Based on the attention-based encoder-decoder architecture
described by Bahdanau et al. (2014), Ha et al. (2016) have
proposed an approach to extend this architecture to multi-
lingual translation. The idea is to train the NMT system
using a unified vocabulary and training corpus across all
languages, while making no modifications to the architec-
ture. For this, Ha et al. (2016) describe two techniques in
the form of input pre-processing steps:

• Language-specific Coding words of different lan-
guages are distinguished through language codes.
This, for example, can look like the following:
bank→@en@bank

• Target Enforcing A symbol indicating the desired tar-
get language of the translation is added to the begin-
ning and at the end of the sentence.

Shared Embedding The approach of using shared vo-
cabularies across multiple languages also results in a shared
embedding space. As Ha et al. (2016) have shown in their
experiments, the NMT system learns to correlate words of
different languages in this shared embedding space in such
a way, that words with similar meanings end up closer to
each other.
The goals of this approach are to

• improve translation quality for individual languages,
by letting the NMT system learn common semantics



across languages, thus helping the system to better
generalize

• improve translation quality for language pairs, for
which parallel training data are scarce, and in the ex-
treme case even allowing for zero-shot translation, by
letting the NMT system find a representation of the
sentences, which abstracts from the individual lan-
guages

• reduce the amount of translation systems needed for
translation between n languages from n (n− 1) to a
single one, thus reducing the amount of training time
and the amount of parameters

2.2. Inspection of Neural Sentence
Representations

Prior to the introduction of attention to the encoder-decoder
architecture Cho et al. (2014), Sutskever et al. (2014) and
Shi et al. (2016) among others have inspected the encoder
sentence representation. The former two have explored the
ability of the encoder to represent sentences at the level of
their meaning by comparing the relative positions of sen-
tences close to each other in terms of meaning. In their
visualization of selected few sentences by means of a 2-
dimensional PCA projection Sutskever et al. (2014) show
a discernible additive relation between sentence represen-
tations, closely resembling the relation between words in
word embeddings. This indicates that the encoder in their
NMT system does indeed have the capability of abstracting
from language and representing the translated sentence on
a semantic level.
Shi et al. (2016) have inspected the sentence representation
on a syntactic level and have found that the encoder implic-
itly learns to store information about the source sentence
syntax in the sentence representation.
This sentence level representation, which Cho et al. (2014)
call summary is the equivalent to the context vectors in the
attention-based model, with the difference being that con-
text vectors represent only the part of the sentence it puts
attention to.

2.3. Inspection of Context Vectors in the GNMT
System

Based on the same principle as (Ha et al., 2016) multilin-
gual NMT system, Johnson et al. (2016) have proposed
a multilingual attention-based encoder-decoder NMT sys-
tem. In the course of their experiments Johnson et al.
(2016) have inspected the intermediate sentence represen-
tation of the translated sentences in their NMT system in
respect to its resemblance of an interlingua representation.
This sentence representation they call the attention vectors,
and is equivalent to what we call context vectors in this pa-
per. Using a t-SNE projection into three-dimensional space,
Johnson et al. (2016) observe that attention vectors for se-
mantically identical sentences form clusters. Thus they vi-
sually confirm, that their NMT system learns to organize
sentence representation by their meaning, which they call
“early evidence of shared semantic representations (inter-
lingua) between languages”. Furthermore Johnson et al.
(2016) have found a correlation between the translation

quality for these semantically identical sentences of differ-
ent languages and the similarity between the attention vec-
tors for these sentences.

2.4. Generative Adversarial Networks
Generative Adversarial Networks (Goodfellow et al., 2014)
are a type of neural network, used in an approach for train-
ing generative models in an unsupervised fashion. It con-
sists of a generative network G, which tries to generate data
and a discriminative network D, which tries to differentiate
between data generated by G and the training data. G is
then trained to “trick D into thinking” that the data gener-
ated by G originates from the training data by maximizing
the error for D. In this adversarial manner G is trained
to produce data which is indistinguishable from the actual
training data.
The approach of letting a discriminating network D clas-
sify the output of another network G is similar to the pro-
cedure used in this paper: we build a discriminator D on
top of the attention mechanism of a NMT system G, while
ideally looking for D to fail in its classification task. Un-
like with the approach with GANs however, we do not take
the next step of adjusting G to maximize the error for D.
We describe the potential future work on this matter in Sec-
tion 5.1..

3. Inspection of Context Vectors
Prior to the introduction of attention to encoder-decoder
NMT systems (Cho et al., 2014), a source sentence read
by the encoder was encoded into a fixed length vector. The
decoder then generated the target sentence having only seen
this fixed length vector, forcing the encoder to find a mean-
ingful sentence representation containing all the semantic
information in the source sentence. With attention this
meaningful representation has moved from this single fixed
length vector to a set of multiple vectors, the so called con-
text vectors; the principle however stays the same. The ad-
dition of multiple languages to the source and target side of
the encoder and decoder as proposed by Ha et al. (2016) in-
creases the problem complexity while keeping the amount
of parameters constant, thus compelling the network to gen-
eralize by using common semantics between languages.
Under such circumstances the NMT system would ideally
learn a purely semantic representation of sentences, while
abstracting from the individual source and target languages.
This principle of translating a sentence into its language-
independent meaning is known in linguistics as an interlin-
gua representation, and the idea has been known for many
centuries. As the context vectors are strongly reminiscent
of such an interlingua representation, this begs the question
of how close to an interlingua it is. In other words, we want
to know how well the NMT system learns a shared seman-
tic representation of sentences across multiple languages.
One criterion for evaluating how well the NMT system
learns this shared representation is to look at the indepen-
dence of the sentence representation – the context vectors –
from the individual languages. In Section 3.1. we describe
how we measure this degree of independence for the con-
text vectors in the proposed NMT system.
Based on our experiments we have found the context vec-



tors in our NMT system to be language dependent. In Sec-
tion 3.2. we describe how we – while exploring the cause
for the dependence – isolated the language dependent fea-
tures in the context vectors. Furthermore we describe how
we use the result to manipulate the context vectors. Finally
we describe how we confirm that using this manipulation
we can eliminate the linear language specific differences
between context vectors. This could potentially be applied
in zero-shot translation in order to change context vectors
of a language pair which the NMT system never saw during
the training to take on the form of context vectors which the
NMT system saw during the training, effectively removing
noise in the process of translation.

3.1. Measuring Context Vector Independence

We consider the independence of the context vectors from
the individual languages to be a good indicator for how well
the NMT system learns the shared representation. This is
because, assuming that the NMT system perfectly learns a
shared representation, then sentences of different languages
would arrive at the same representation and would thus be
indistinguishable in terms of the languages involved. Con-
sidering the fact that showing the independence of the con-
text vectors from the source and target language would re-
quire a formal proof, we approach the problem by study-
ing the dependency, which, if present, can be discovered
through experimental means. Given a context vector, we
try to identify the language pair it was generated from, and
declare the dependence in the case of success. As this prob-
lem can be formulated as finding a correlation between a
vector c ∈ Rn and one language from a set of candidates
{l1, . . . , lk}, this calls for classification. Given the recent
success of neural networks in discriminative tasks with high
dimensional input, we approach this particular classifica-
tion problem with classification via neural networks.

Neural Classification Due to the nature of our input
we believe a simple feed-forward neural network (FFNN)
with fully connected layers to be the most appropriate type
of network as the basis for the classifier. Using super-
vised learning, the classifier is trained to predict the correct
source-target language pair, by providing context vectors as
input and their respective true source-target language pair
as the label. Starting with the simplest approach we will
first attempt linear classification using a network without
any hidden layers. We call this type of network a single
layer perceptron (SLP), and this type of classification lin-
ear classification. The capability of such a network to suc-
cessfully detect the presence of a dependence would sug-
gest a linear separability of the context vectors, allowing the
network to partition the feature space into relevant classes.
After the linear classification we will attempt a classifica-
tion using an MLP-classifier with one or more hidden layers
to look for nonlinear features.
The labels will be encoded as concatenation of two one-hot
vectors, the first vector encoding the source language and
the second vector encoding the target language. The classi-
fiers will then be trained using a softmax-layer as the output
layer and cross entropy error between the first and second

half of the network output and labels:

os = softmax(D(x)1...5) ot = softmax(D(x)6...10)

ts = t1...5 tt = t6...10

Es = H(os, ts) Et = H(ot, tt)

E =
Es + Et

2

for the classifier D and the input-label pair (x, t). The net-
work is then trained to minimize E using adam (Kingma
and Ba, 2014) as optimizer. The classifier predicts the lan-
guage pair using the argmax of the output first and second
half:

(Ls, Lt) = (argmax(D(x)1...5), argmax(D(x)6...10))

NMT system
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Figure 1: Schematic description of the procedure we use
to test for the dependency of the context vectors. During
translation the context vectors are extracted from the atten-
tion module, and fed to the classifier. The classifier output
is a “two-hot” vector representing the predicted source and
target language in the its first and second half (every lan-
guage is assigned a fixed dimension, e.g. English in dimen-
sion 0,. . . ).

3.2. Investigating Linear Relation of Context
Vectors

The results of our experiments have shown that a linear
classifier is capable of correctly classifying the context vec-
tors. As described in Section 3.1., this suggests the linear
separability of the context vectors. Suspecting the existence
of a linear translation, such that a context vector of one lan-
guage can be obtained when applied to a context vector of
another language (similar to the additive relation between
words with word embeddings), we decided to further in-
vestigate this matter.
Taking context vectors x with s1 as their source language
and t1 as their target language, and another language s2 we
will try to find a vector b, such that x + b is recognized



as a context vector with s2 as its source language. In or-
der to find such a vector b for the context vector x we will
need a comparable context vector x′ which has s2 as its
source language. To obtain this counterpart x′ for x, we
need to ensure that two matching source sentences f1 and
f2 in our parallel corpus with s1 and s2 as their respective
language, are both translated into the same target sentence
in the language t1, allowing for the direct comparison of
the generated context vectors. To this end we will adjust
the NMT system sampling mechanism to accept a reference
target sentence e = (e1, . . . , em) and use et−1 as the input
for the decoding step t, instead of the previously generated
target word yt−1. With this method we will obtain a pair of
context vectors (xt, x

′
t) for each target word et, which can

then be used as an input and its label in the training of b.
Using a training set with German-English context vectors
for the input, and matching Dutch-English context vectors
as labels, we will again use gradient descent to train a trans-
lation by randomly initializing a vector b and then minimiz-
ing the summed squared error

sse(x+ b, t) =
1

2

∑
i

(xi + bi − ti)
2

for each input-label pair (x, t).
The resulting translated vectors x+b will then be fed to the
previously trained classifier, in order to see whether they are
recognized as Dutch-English context vectors. Furthermore,
in order to see how this translation affects context vectors of
different target languages, we will apply this translation b
to German-Italian context vectors. We expect the resulting
vectors to be classified as Dutch-Italian context vectors.

Eliminating Language Specific Differences After find-
ing the linear translation bAB which translates from the
original source language A to the new source language B,
we can eliminate the source language specific differences
for context vectors c and c′ with A and B as their respec-
tive source language, by translating c to c+bAB . To confirm
that the new context vectors are indeed language indepen-
dent (at least linearly), we can again train a classifier as de-
scribed in Section 3.1. using the modified context vectors.
To this end, we (as illustrated in figure 2) take context vec-
tors of different language pairs and translate each of them
to English-German context vectors. We then train classi-
fiers to predict the original language pair for these trans-
lated context vectors to see whether the classifiers are still
able to differentiate between context vectors of different
languages.

4. Evaluation
4.1. Multilingual Translation Models
In order to inspect the context vectors we have trained trans-
lation models as described by Ha et al. (2016).

Training Data For training we have used the multilingual
WIT3 (Cettolo et al., 2012) training corpus, which provides
high quality multilingual translations. This corpus consists
of transcriptions of 200,000 English sentences from TED
Talks, and their translations into German, Dutch, Italian
and Romanian. We have trained the NMT system using

en→de

nl→de

it→de

ro→de

en→de Classifier

Figure 2: To see whether we can eliminate language spe-
cific differences between context vectors, we train classi-
fiers to differentiate between translated context vectors.

every possible combination of source and target languages,
except for language pairs where the source and target lan-
guage are the same. This gives us 20 language pairs, and
therefore 20 valid classes of context vectors and a total of
4,347,886 sentence pairs. For the purpose of evaluation
we have used another development dataset set consisting
of 900 sentences from TED Talks involving the same five
languages.

Translation System We have trained the translation
models using Nematus (Sennrich et al., 2017), which pro-
vides an attention-based encoder-decoder NMT system as
proposed by Bahdanau et al. (2014). Nematus uses a spe-
cial type of RNN, which Sennrich et al. (2017) call con-
ditional GRU with attention in its decoder. As alignment
model Nematus uses a feed-forward tanh-layer, which is
jointly trained together with the rest of the system. We have
used subword translation units.
In order to achieve multilinguality as described by Ha et
al. (2016), all 20 parallel corpora have been merged into
one multilingual parallel corpus through the concatenation
of the source and target texts in the same respective order.
The source and target vocabularies have been built from
the merged corpus after applying every pre-processing step.
The pre-processing steps include:

1. tokenization

2. true casing

3. byte pair encoding

4. language specific encoding

5. target enforcing

As we assume, that a smaller hidden layer size will force the
network to abstract from the source language even more,
we have trained models with different sizes of hidden layers
in order to test whether this holds true. Furthermore, in
order to compare how classification results evolve with the
ongoing training of the translation system, we also evaluate
one particular model at different checkpoints in the course
of training.

Model Parameters For the evaluation task we have
trained three translation models. We trained all models us-
ing the same setup and network parameters, differing only
in the amount of training time and the hidden layer sizes,
which is 1024 for the first model, and 512 for the second



and third models. We used English, German, Dutch, Ital-
ian and Romanian as source as well as target languages,
whereby words were pre-processed into subword units with
BPE1, using a BPE merging parameter of 39,500 trained
on the merged corpus before applying language specific en-
coding, resulting in a total vocabulary size of 88,000 words.
We used a maximum target sentence length of 50 and a
word embedding size of 500.

Training We have trained all models using a batch size
of 40, adam as optimizer and dropout training (Srivastava
et al., 2014), with a dropout ratio of 0.2 for the embedding
layers and hidden layers and 0.1 for the source and target
layers. Since we use a concatenation of the bidirectional
encoder forward and backward hidden states as annotation
vectors, this resulted in context vectors of size 2048 for the
first model and 1024 for the second and third models.
The first model, with the hidden layer size of 1024 was
trained for 110,000 iterations, until coming to an early stop.
This resulted in a final BLEU score of 11.94. Another
model, with a hidden layer size of 512 was trained for
160,000 iterations, resulting in the second model. Training
the second model for another 100,000 iterations, resulted
in the third model after a total of 260,000 iterations. These
models achieved BLEU scores of 11.07 after 160,000 iter-
ations and 14.94 after 260,000 iterations (see Table 1).
All translations used for calculating BLEU scores were
generated using beam search decoding, with beam size 5.

src trg en de nl it ro avg
en 17.82 16.17 17.27 14.75 16.50
de 23.21 13.84 12.07 9.65 14.69
nl 20.42 12.46 12.11 9.44 13.61
it 22.84 12.12 12.35 11.16 14.62
ro 22.85 11.87 12.23 14.10 15.26
avg 22.33 13.56 13.64 13.88 11.25 14.94

Table 1: BLEU scores for the third NMT model (hidden
layer size 512 and 260,000 training iterations). The distri-
bution of scores for specific language pairs is also represen-
tative for the other trained models.

4.2. Classification of Language Pairs
Using the development dataset as translation source, we
generated and extracted the context vectors and the cor-
rect language pairs from Nematus using the previously
trained models. This resulted in 459,878 context vectors
for the first model, 457,054 vectors for the second model,
and 444,570 vectors for the third model, with overall 20
classes. The number of context vectors matches the num-
ber of translation symbols in the generated target sentence,
and thus differs for each translation model, since they pro-
duce different translations. We merged the data from each

1for BPE we used the script from the subword-nmt repository
(https://github.com/rsennrich/subword-nmt).
For tokenization and true casing we used the scripts provided
by the Moses framework (http://www.statmt.org/
moses/)

class into one sequence by alternating between single sen-
tences of each class, ensuring that each mini batch of size
1000 to contained samples of all 20 classes, considering the
sentence maximum length of 50.
Using the TensorFlow (Abadi et al., 2016) low level API we
built for each model SLP-classifiers, and MLP-classifiers
with one hidden layer containing 64 hidden neurons. As
the hidden layer activation function we use ReLU. All clas-
sification accuracies were calculated as ratio of correctly
predicted language pairs, using 25% of the context vectors
as the validation set.

Results As illustrated in Table 2 all classifiers have
achieved significantly high classification accuracies, with
linear classification achieving 86-96% correct classifica-
tion rates after 50 epochs of training, and slightly higher
rates for their nonlinear counterparts. These values are also
representative for the classification rates of the source lan-
guages alone, as the target languages have been correctly
classified with near 100% accuracy by all the classifiers.

NMT model linear MLP
first 95.75% 96.09%
second 85.93% 89.94%
third 91.93% 94.29%

Table 2: Classification rates for the linear classifiers and the
MLP-classifiers after 50 epochs of training. NMT model
refers to the model which was used for generating the con-
text vectors.

These results strongly suggest that the extracted context
vectors are not independent of the source language. The
high classification rates of the linear classifiers further sug-
gest a linear relation between context vectors of different
languages. In view of the fact, that the classification rates
for the linear classifier increase with ongoing training of the
NMT system, it is apparent that the linear features which
the classifier makes use of become more distinctive with
the progression of the training.
The confusion matrix (see Table 3) shows a discernible cor-
relation between the language specific BLEU scores and
classification errors for that language, Romanian being the
language with lowest BLEU scores, as well as with most
classification errors. Furthermore, there is also a noticeable
correlation between language similarity and the classifiers
tendency to confuse them with each other, as can be seen
with Dutch being commonly misclassified as German and

pred
label en de nl it ro

en 22398 25 21 15 42
de 32 21818 129 19 24
nl 24 326 24784 43 89
it 171 46 74 19728 2490
ro 85 54 94 628 20841

Table 3: The Confusion matrix shows a comparison be-
tween predicted source languages and labels

https://github.com/rsennrich/subword-nmt
http://www.statmt.org/moses/
http://www.statmt.org/moses/


source language original translation
en 0 0
de 1268 133
nl 100 1246
it 32 16
ro 13 18

Table 4: Comparison of predicted source language for Ger-
man to English context vectors, after training and applying
translation of source language to Dutch

source language original translation
en 4 1
de 1233 172
nl 18 1081
it 0 0
ro 2 3

Table 5: Comparison of predicted source language after
applying the same translation to German to Italian context
vectors

Romanian misclassified as Italian.
For the classification with the MLP we can observe slight
increases in classification rates.

4.3. Linear Relation between Context Vectors
To investigate the supposed linear relation between the
context vectors of different languages, we successfully
trained a translation as described in Section 3.2.. For this
we first modified Nematus to accept a reference target
sentence for translating a source sentence.
Using the German and Dutch translation of the devel-
opment dataset as translation source and the English
translation as the reference, we generated a training set
with the German-English context vectors as the input and
the Dutch-English context vectors as the labels, using the
third translation model. Using adam as optimizer we then
trained a vector b, by minimizing the summed squared
error. The training of such a translation for 20 epochs
resulted in a vector b with a norm of 0.710 and a mean
distance of 6.912 between the translations and their labels,
the mean distance between untranslated German-English
vectors and their Dutch-English counterparts being 6.939
(see Figure 3).
Applying this trained translation to a validation set unseen
in training, we further classified the originally German-
English context vectors with the help of the previously
trained linear classifier. As seen in Table 4, 88% of
the translated vectors were classified as Dutch-English.
Furthermore, the application of this translation to German-
Italian context vectors, resulted in 86% of these to be
classified as Dutch-Italian (see Table 5). Applying this
same procedure for all 180 valid four-tuples of languages2,

2For the original source language s, the translated source lan-
guage s′, the target language used in training the translation t,
and the target language t′ of the context vectors which the trained
translation was applied to, a four-tuple is considered valid if

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

Figure 3: The distribution of distances between original
(blue) and translated (green) German to English context
vectors to their correspondent Dutch to English context
vectors shows, that the translation has negligible impact on
the distances.

from a total of 752,841 context vectors for 90.9% the
source language was successfully translated as intended,
while not affecting the predicted target language for these
context vectors.

4.3.1. Eliminating Linear Dependence
As described in Section 3.2. in order to confirm that the
found linear translations can be used to eliminate the linear
dependence of the context vectors, we have retrained our
classifiers using modified context vectors. For the training
set we took all the context vectors with German as their
target language, and translated them to English as the new
source language. Analogous to the procedure used in Sec-
tion 3.1. we then trained classifiers to predict the original
target language. For the linear classifiers this resulted in
classification rates around 25% for 4 classes, thus failing at
the classification task. This indicates that we successfully
eliminated the linear dependence on the source language.
The MLP-classifiers achieved classification rates of up to
83.3%, showing the presence of purely non-linear language
dependent features.

5. Conclusion
In this paper we have explored the ability of the multilin-
gual NMT system proposed by Ha et al. (2016) to produce
a shared representation across multiple languages. To this
end we have inspected the intermediate sentence represen-
tation of the NMT system, the context vectors. We took
as criterion for how well the NMT system learns a shared
representation the degree of independence of the context
vectors from the source and target languages involved in
translation. In order to measure the dependence, we have
trained classifiers based on feed-forward neural networks
which, given a context vector, predict the language pair in-
volved in its generation. Using the context vectors gener-
ated by our trained multilingual NMT systems, our linear

s, s′, t are pairwise different and s, s′, t′ are pairwise different,
resulting in 60 different translations, which are each applied to
context vectors of 3 different target languages.



classifiers have achieved rates of correct classification of
up to 95.75% for 25 possible classes. This suggests that
our NMT system does not successfully produce a shared
representation.
Having explored the underlying cause of success in classifi-
cation, we have found present a linear relation in Euclidean
space between context vectors of different languages. More
precisely, for a pair of languages (A,B) we have found a
vector bAB , such that for a context vector c with A as its
source language, c + bAB is classified as having B as the
source language in 90.9% of the cases. This translation of
the source language does not affect the target language. We
have found this translation to have negligible impact on the
distance between the context vectors, which leads us to the
belief that these language dependent differences in context
vectors are merely noise, and particularly harmful for zero-
shot translation. Finally we have demonstrated that our lin-
ear classifiers, which we trained on context vectors with
modified source language fail in their task to classify the
original source language. This shows that we can use trans-
lations found to effectively eliminate the language specific
linear differences between context vectors.

5.1. Future Work
Adversarial Training of NMT System As described in
Section 2.4., the approach used in this paper is similar to the
first stage in the procedure to train generative models with
GANs. As GANs have shown great success, the remain-
ing steps of this procedure could be applied to the training
of the NMT system as well. By training the NMT system
G to produce context vectors for which a discriminating
network D is unable to predict the correct language pair
in an adversarial manner, the NMT system could learn to
produce indistinguishable context vectors. The NMT sys-
tem would then be alternatingly be trained in supervised
learning and adversarial unsupervised learning, potentially
learning a language independent representation.

Zero-Shot Translation The linear translation which we
have found to be present between the context vectors could
be potentially applied in order to improve zero-shot transla-
tion. Zero-shot translation is the task of producing transla-
tions for a language pair which the NMT system never saw
during the training. For a language pair (A,C), which the
NMT system never saw during the training, and a language
pair (B,C), which the NMT system saw during training
an attempt at improving translation quality for the unseen
language pair could be made by translating the context vec-
tors cAC to cBC = cAC + bAB for the previously described
translation bAB . This produces context vectors for a lan-
guage pair which the NMT system is more familiar with.
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G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Mané, D., Monga, R., Moore,
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