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Abstract
We discuss biomechanics and its use in studying human movements especially in sports and exercise events, and how sensor information
from the devices such as acceleration sensor, gyroscope, force plate, and motion capture system can be effectively used to gain a greater
understanding of human movements in every-day activities and communicative situations as well. Using AI and IoT technology, we
propose to apply the approach to collect, analyse, and annotate motion data in common activities.
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1. Introduction
In language communication, interlocutors effectively
accompany their speech with gestures and body
movements. These movements range from unconscious
moving to intentional gesturing, and they have various
functions such as giving rhythm to one’s speech, indicating
engagement in conversation, pointing, coordinating
interaction, and of course, performing certain physical
actions. Until recently, studies have been based on video
analysis and manual annotations (cf. Allwood et al. 2007,
Jokinen 2011). Several annotation tools such as Praat
(Boersma and Weenink 2009) for speech and Anvil (Kipp,
2001) and Elan (ELAN) for video data can be used for
detailed analyses. However, it is time-consuming and often
difficult to manually annotate timing and amplitude of the
various actions and activities accurately, and so advance
video analysis has been used to extract movements of
conversational participants using OpenCV toolkit (Bradski
and Koehler, 2008), see e.g. Vels and Jokinen (2015) who
experiment with bounding boxes, and Jongejan (2016) who
provides a plugin to include velocity and acceleration of
head movements from video analysis to Anvil-annotations.
Sensor and tracking technology has been developed
especially in medical domain, and used to analyse e.g. non-
verbal behavior (Philippot et al. 2003) and measure
movement in Parkinson disease (Galna et al 2014). The
Human Communication Dynamics framework (Stratou and
Morency, 2017) aims at a unified approach to address
challenges in multimodal behavior analysis, and to jointly
analyse the participants’ language, gestures and social
signals for efficient computational perception algorithms in
behavioral sciences and real world applications.

In this paper we present a new methodological approach to
study movement in human conversation and daily
activities, based on Biomechanics. We follow the approach
of Human Communication Dynamics, but differ from this
in that we especially aim to study human movements and
motor learning in everyday activities where the movement
analysis is not necessarily used to infer communicative
intentions of the participants, but to perform certain actions
better, as when instructing learners how to move their body
in a correct way in DanceSport, care-taking, etc.

We explore biomechanics in automatic detection and
analysis of human motion, and the results of our
experiments show that the joint use of various sensor data
enables us to achieve accurate perception of human motion.
It is thus possible to achieve a better understanding of the

different aspects of human motion and to study how they
function in everyday communication and signal the
participants’ engagement in interactive situations. The data
can be used in various practical applications developed for
the health and well-being of the people.

Another important contribution of the paper is the new
methodology that can be used in human-human and
human-robot interaction studies. Sensor information allows
us to observe human motion and gesturing in everyday
activities, and we can then analyse it automatically using
machine-learning techniques. Using IoT possibilities to
share the sensor information with a communicating robot,
the data can be directly used in the control and coordination
of the interaction between the human and the robot. If the
robot is equipped with the knowledge of the motions in
general, e.g. annotations and ontologies of the motion data,
it is possible to explore how a robot agent can learn
common activities by imitation and explicit instruction.

The paper is structured as follows. We will first briefly
introduce biomechanics and the sensors used in the motion
and gesture analysis in Section 2. We will then describe the
experiments in motion data collection in Section 3. Finally,
we discuss methodological issues concerning the
application  of  biomechanics  and  sensory  data  for  the
understanding of the human every day activities in real life.

2. Biomechanics
The new technology on sensors has been significantly
advanced in the recent years. Various robust high speed and
sensitive devices, such as the acceleration sensor,
gyroscope, electromyography, force plate, and motion
capture system, have been developed to measure motion
and body posture with high accuracy and precision.
Information from the sensors can then be effectively used
to collect and analyse data on human movements.

Biomechanics is a study of human movement. It applies the
laws of mechanics and physics to human performance and
aims to explain how and why the human body moves as it
does by analysing the forces acting on the body (kinetics)
and the movements of the body (kinematics). It is used
especially in sport and exercises, with two main purposes:
to improve physical performance, and to prevent injuries.
Besides human movements in sports and exercises,
biomechanics can also be used to study daily activities such
as walking, sitting and lifting. Using AI and IoT
technology, we propose to apply the biomechanis approach
to collect, analyse, and annotate motion data in common
daily activities, including language communication.
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In biomechanical experiments, sensor technology is widely
deployed, and a motion capture system and force plates are
frequently used (Figure 1). These instruments can quantify
the human movements from dynamics. The motion capture
system  is  used  to  measure  the  position  data  of  body
segments, while the force plates are used to measure ground
reaction forces. The data is interpreted with respect to
knowledge about the human anatomy and physiology, and
inverse dynamics is used to compute the turning effect of
the anatomical structures (muscles, ligaments) in joints,
which is necessary to perform the particular motion.

Figure 2 shows a snap-shot of a motion tracker system
depicting a person balancing on a force plate. The force
plate is a device that measures the three components of a
force (along x, y, and z axis) applied to the surface, as well
as the vertical moment of force. It is used to measure
acceleration, work, and power of locomotion, and can also
measure the angle and distance of a move such as a jump.
Combined with kinematics of the joint angles, it is possible
to determinate torque, work and power for each joint to
study movement e.g. for robotics and sports applications.

According to Hooke's law, force is directly proportional to
extension distance on a linear spring: F = -kX, where k is a
constant factor and characterizes the stiffness of the spring.
Besides the linear force that pushes and pulls an object,
movement can also be twisted by a rotational force called
torque or moment of force. Torque is defined as the rate of
change of angular momentum of an object, and it is directly
proportional to angle of rotation on torsion spring (Figure
3). Torque is measured in Newtonmeters (Nm).

Previous studies have shown that muscles have elastic
function (Komi 2000). Research about human and animal
locomotion have used the spring-mass model to explain the
interdependency of the mechanical parameters that

characterize the movement, especially running and
hopping. The spring-mass model is a simple model that
represents the mass of the actor as a single point mass, and
the musculoskeletal system as a spring. During running and
hopping, lower extremities can be modelled by a linear
spring (Farley and Morgenroth 1999), while lower
extremity joints can be modelled by torsional spring model
(Hobara 2009; Hobara 2010).

Although the actual body is a complicated set of muscles,
bones, tendons, and ligaments which act across and upon
joints to produce movement, the spring-mass model
describes and predicts the mechanics of the movements in
an accurate manner. It can be concluded that the individual
elements of the musculoskeletal system are integrated in a
way that allows the overall system to behave like a simple
spring during running and jumping. It is also possible to
adopt  the  spring  model  to  study  joints  and  body  parts  in
various other activities as well, besides running and
jumping (see below). Furthermore, it is possible to
represent the body’s movement ability, or stiffness, by the
spring constant k, and much research has focused on
determining this constant.

3. Experiments and applications
Development and increased stability of motion trackers as
well as sensor technology provide help in quantifying
movement. In this section we summarize our research on
daily activities, such as walking and dancing, using this
information. The purpose of the studies has been to analyze
whether the torsion spring model can be applied to the axial
twisting movements in ballroom dancing and other
activities. We also present Axis Visualizer, a mobile phone
application to visualize motions.

3.1 Axis twisting experiment
Axial twisting movements along the longitude axis occur
frequently. For instance, during walking the upper body
and  lower  body  rotate  in  opposite  direction.  We  used  a
motion capture system to measure angle for rib cage, and a
force plate to measure torque. The correlation between the
angle and torque was calculated and compared with the
spring model predictions. The setup of the experiment is as
shown in Figure 4. Participants had to do axial twisting

Figure 1 Force Plate and Motion Sensors.

Figure 2 Snapshot of a motion tracker system.

Figure 4 Setup for the axial twisting experiment.

Figure 3 The relationship between torque and angle based on
Hooke’s law.



movement sitting on the force plate. After a short practice,
the experiment started with a minimum of 10 seconds axis
twisting in two conditions: in a slow, relaxed condition, and
in a fast, intensive condition. The results are shown in
Figures 5 and 6. The smooth harmonic curve and the linear
correlation between torque and the angle show that the
repetitive axis twisting movement can be modeled using
the spring model (more details in Yoshida et al. 2018).

3.2 DanceSport
One of the popular dancing styles in the world is ballroom
dancing, nowadays called DanceSport. Dancing can
effectively help in fitness and wellbeing, and the exercise
effects of DanceSport have already been proved. For
instance, Rehfeld et al. (2017) consider the effects of a long
(18 months) dancing intervention on elderly people’s
fitness and well-being, and how it can be efficiently used
to enhance motoric capabilities of the elder people thus
preventing injuries that stem from inaccurate or fragile
motor control.

Dancing is also a good example of a movement which
requires balance and smooth locomotion over a large area.
Moreover, it requires coordination between two persons.
Biomechanical analysis can provide a detailed analysis of
the timing, amplitude and speed of the joint movements by
the dancer’s, allowing accurate quantitative measuring of
the coordination in dance configurations. In the preliminary
experiments with the Japanese professional dancers, we
have noticed e.g., that the amplitude of the joint movements
is less compared with the same movements performed by
the individual dancer alone (showing the dance movement
without the partner), while the rotation speed is slower in
individual dancing. We will continue analysing the data
from the All Japan Ballroom Dance Competition, to get a
clearer understanding of the dance movements. The results
can be used for learning and practise purposes, and to train
competitors for better individual performance.

Biomechanical data can also be used to investigate human
coordination in general, e.g. in joint tasks like cooking,
assembling devices, or communication. In particular, since
language communication is a cooperative activity whereby
interlocutors use gesturing and body posture to coordinate

the flow of interaction, such accurate measurements of the
movements can be used to study engagement in interaction,
i.e. to investigate how the interlocutors pursue their
communicative goals while simultaneously pay attention to
the partner in order to understand the partner’s intention.
Biomechanical measures allow us to calculate correlations
between timing and location of the individual movements,
and also include body rotation and speed of the movements
as parameters to understand the posture of participants.

3.3 Axis Visualizer
Many people use activity trackers and smartwatches to
measure various activities of their daily lives. As a practical
application of the biomechanical information for everyday
use, we developed an easy-to-use application for mobile
terminals which allows the user to assess smoothness of
their axial twisting exercise. The application is called Axis
Visualizer and it is meant to function as a quick and simple
assessment tool. The application deploys iOS Sensors for
acceleration, while gyro inside the mobile terminal is used
to analyze the spring model (see Section 3.1). The app can
be used by simply attaching the mobile terminal to one’s
chest and doing the axial twisting movement for a short
time, as shown in Figure 7. After the exercise, the system
analyses the motion, and calculates whether the movement
was harmonic. Two screenshots of the app displaying the
result of an exercise are shown in Figure 8.

4. Discussion
Accurate biomechanical information has been mainly used
for medical testing and rehabilitation tasks as well as for
advanced studies on neuro-cognition and biomechanical
feedback. We propose to apply the approach to collect,
analyse, and annotate motion data in common everyday

Figure 8 Two screen shots for Axis Visualizer.

Figure 7 Axial twisting movement for Axis Visualizer.Figure 1 Visualisation of torque and angle in an intensive axis
twisting movement.

Figure 6 Relaton of torque and angle in an intensive axis
twisting movement.

Figure 5 Visualisation of torque and angle in an intensive axis
twisting movement. From Yoshida et al. (2018).

Figure 6 Relation of torque and angle in an intensive axis twisting
movement. From Yoshida et al. (2018).



activities to increase understanding of human behaviour in
real situations and to be able to build models for their
computational assessment. We provided two examples of
this kind of research and discussed an axis twisting
experiment and DanceSupport.

Biomechanics data can also be collected using portable
devices. This opportunity provides an interesting option for
researchers who aim at studying interaction in real-life
situations. So far, the participants’ movements have been
studied from video recordings or by using specific motion-
tracker devices, which require the data collection to take
place in laboratories. However, for ecologically valid data,
it is important to be able to measure everyday activities in
real-life situations, using simple devices and easy-to-use
interface. The mobile application, Axis Visualizer, can be
considered as the first step in this direction, since it exhibits
the possibility to use a mobile phone to record motion and
get an overview of the person’s real-life activities.

In natural multimodal communicative situations, the
connection from the visual scene to cognitive interpretation
and appropriate conversational responses is important to
understand the relevant mechanisms for human-human
communication and for interactions between human and
robot agents (cf. Jokinen and Wilcock, 2013). Hand and
head movements are effectively used as signs that e.g. point
to an object of interest, coordinate turn-taking by mutual
gaze, and accompany the speaker’s speech with beat
movements (Kendon 2004, Paggio et al. 2010, Jongejan
2012, Jokinen 2011).

An interesting area of research is simultaneous timing of
hand gestures, eyes, and nodding. The eyes and hands are
used together in many everyday tasks, and it has been
shown that the eyes generally direct the movement of the
hands to targets: the eye-gaze is about one second ahead of
the action start (Land 2006). Furthermore, the eyes provide
initial information of the object (its size, shape, and
possible grasping locations) so that the human can
determine the motion of the hand, the hand shape and force
to be used in the fingertips in order to exert suitable level
of force and coordination to perform a task. The complexity
of the coordination of eye and hand to perform everyday
tasks is an interesting challenge for studies in cognition and
neural control of eye and hand coordination, but it is also
important in clinical work concerning disorders and
impairments. For instance, in older adults, eye-hand
coordination has been shown to decrease especially in tasks
involving fast and precise movements, e.g. such everyday
tasks as picking up a pen or making tea can become
difficult. Having technology which enables training and
assistance in such situations is useful for improving
independent living and wellbeing. In various sporting
performances, computer games, typing, etc. feedback
through biosensors and biomechanics can give accurate
information about how the task is progressing and what
kind of changes in the task procedure are necessary to
improve the system design and logistics of the interaction.

Given that the new technology allows several different data
flows to be recorded and analysed, a unified approach to
data model is necessary, cf. Human Communication
Dynamics framework (Stratou and Morency, 2017). Some
discussion can also be found in Hall and Llinas (1997), and
more  recently  in  Blaauw  et  al.  (2016),  from  the  sensor

integration point of view, and we aim at exploring with the
Fusion Model to enhance our understanding of gestures and
movements in communication, to build models for the
conversational rhythm and for the interlocutors’ interest
and involvement in the interaction and to better estimate
human engagement in smooth communication. Moreover,
combined with the knowledge of actions and activities, it is
possible to experiment with automatic learning, i.e. to learn
to recognize gestures and action sequences automatically.
In attempts to teach a robot agent to perform certain tasks,
e.g. pick up a pen, data about the correct movement patterns
is necessary, and the proposed method can be an efficient
way to collect accurate data.

Considering the IoT context of intelligent homes and public
places, the use of biometrics and sensor data brings in a
possibility to record everyday activities in real situations in
the ubiquitous environments. The data can be immediately
shared with other devices, e.g. with robots, which can thus
learn about human motion and be able to provide assistance
that is relevant in a given context. For instance, in elder care
scenarios, a fall of an elder person onto the floor,
irregularities in sleeping patterns or toilet use, wandering
around the rooms, or not being able to find keys, can be
noticed by a ubiquitous system which can then act in an
appropriate manner (call for human help, suggest a keyring
location, etc.)

The approach also brings in questions about the reliability
of the information which depends on the technology. For
instance, force platforms can be inexpensive off-the-shelf
consumer products which makes it easy to conduct
experiments. However, if used in exercise and health-care
applications for measuring a patient’s balance and mobility
performance, their adoption should be carefully checked,
and manufacturing should be in accordance to quality
standards as established by ISO.

Like any data collection nowadays, the use of sensors needs
to be considered with respect to some ethical aspects.
Biomechanics allows people to be accurately identified by
their physical features and typical behavior, so it will be
possible to uniquely identify people. Data collection thus
requires extremely careful consideration and planning and
brings in questions about data storage and re-use. Statistical
methods allow models for anonymous data source, and the
data can be deleted after the analysis, but the issues related
to building general models or individual models for certain
physical and behavioral characteristics remain. Also, high-
quality technology can enable attackers and people may
give away information without their consent or knowledge.

5. Conclusions
Biomechanics is an area of research widely used in sport
and medical domains for rehabilitation and improving
performance. In the context of language communication,
we expect that it will be possible to use the same approach
to collect data, and through modeling, simulation and
measurement gain a greater understanding of performance
in everyday tasks and communicative events.
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