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Abstract
We present a system for mapping facts and knowledge in legal texts, in particular case law opinions and holdings to knowledge graphs,
enabling advanced semantic search over the case law corpus, as well as matching of case descriptions onto case laws using graph
similarity. The essential components for knowledge graph generations are deep linguistic NLP components. We discuss how the deep
analyses provided by these components allow us to process not only the core semantic relations in the legal documents, but also to
process advanced semantic and pragmatic properties, including implicatures and presuppositions.
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1. Introduction
In this paper we discuss ongoing research and development
activities in the domain of Deep Linguistic Natural Lan-
guage Processing (NLP) technologies for the analysis of
legal documents with a focus on court decisions, opinions,
case law, and case documentation. Leveraging deep lin-
guistic annotation technologies like semantic and pragmatic
preprocessing to map cases, case law and opinions onto
knowledge graphs enables us to bring the power of graph
matching search and concept-based reasoning – involving
automatically detected implicatures and presuppositions –
to the world of legal AI (see e.g. Potts (2015)).
The goal of this project is to provide linguistically-
informed, detailed analyses of case law based on
professional-grade comparisons between individual cases.
In pursuit of this goal, we model the content of individual
case documents with knowledge graphs (KGs) built from
semantic and pragmatic processing during the text-mining
step. These KGs can later be used directly to compare indi-
vidual cases, saying how they reinforce, contradict, or build
on one another, eventually providing human-quality analy-
sis of the current state of the body of law as well as au-
tomatic detection of trends that may have escaped human
observers, all at a fraction of the cost in time and resources.

2. Previous Work
There are numerous commercial and free tools to search
and process case law files. We will not go into details here
with the existing commercial solutions. To our knowledge,
none of these commercial solutions seems to provide a deep
content analysis that is supported by fine grained linguistic
and semantic technologies.
There are various documented and publicly available
knowledge graph and ontology implementations for legal
applications. Soria et al. (2007) describe an ontology of
(Italian) law paragraphs, i.e., fundamental units of codi-
fied law. At the highest level, each paragraph belongs to
one of three classes: obligations, definitions, or modifica-
tions. These are divided into subclasses. The class obliga-
tions, for instance, contains the subclasses obligation, per-
mission, prohibition, and penalty. They also train a classi-

fier to assign these classes to law paragraphs automatically.
They report high precision and recall scores (96% and 92%,
respectively).

3. Data
At present, our source material consists of the corpus pro-
vided by the Free Law Project (https://free.law/),
which is an interface and mirror repository for the Public
Access to Court Electronic Records (PACER) (https:
//www.pacer.gov/) service provided by the Admin-
istrative Office of United States Courts (http://www.
uscourts.gov/) to facilitate public electronic access
to federal court records. The bulk of the data we sur-
vey comes from the Free Law Project’s CourtListener
(https://www.courtlistener.com/) service and
takes the form of compressed JSON files representing indi-
vidual cases, organized by jurisdiction.
The JSON objects include meta-information and multiple
content sections, but there is frequently no explicit sepa-
ration of the opinion/holding from fact-finding and other
components of the case. To detect the opinions in the case
files, we use Machine Learning (ML) approaches, training
automatic classifiers on a sub-corpus manually annotated
by legal experts to separate the holding from residual con-
textual information about the facts of the case.1

4. Architecture
The primary step in processing is to extract core seman-
tic relations, e.g. subject – verb – object, from clauses
in the text, which we do by means of NLP components.
We use the Natural Language Toolkit (NLTK) (Bird et al.,
2009) components for basic segmentation and tokenization,
followed by Part-of-Speech (PoS) tagging and WordNet-
based2 hypernym, hyponym, and synonym annotation of

1We use Scikit Learn (Buitinck et al., 2013; Pedregosa et al.,
2011) and additionally various text classifiers based on Bayesian
or Support Vector Machine approaches.

2For details on WordNet see Miller (1995) and Fellbaum
(1998)
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nominal elements. Providing the extended taxonomic rela-
tions for allows us to index textual content such that con-
cept search and search over synonyms is made possible of
the case law corpus. This information is also essential for
mapping of concrete concepts to concepts in KRs, as ex-
plained below.
The Stanford CoreNLP (Manning et al., 2014) pipeline pro-
vides extended analytical components, including lemma-
tizer, a constituent parser, a dependency parser, and a coref-
erence analyzer. The spaCy pipeline (an implementation of
Honnibal and Johnson (2015)) is comparable to CoreNLP,
except that it does not have constituent parsing and corefer-
ence analysis components.
All these components face performance issues and tend to
fail on complex sentences or sentences that exceed a par-
ticular length. By way of example, the following sentence
will receive some linguistic annotation of very limited use:

Their attack is anchored in a Fifth Circuit case,
United States v. Whitfield, which involved two
state judges who were convicted of accepting
bribes from an attorney in exchange for favorable
rulings in his cases.3

It is not uncommon for the types of constructions found
in formal documents to be misanalyzed, particularly clause
level coordination, constructions with ellipsis or gapping,
empty subject constructions, and many other constructions
which require processing that goes beyond the level of com-
bining textually represented words into composite mean-
ings. Rimell et al. (2009) and Nivre et al. (2010) report
that even the best parsers perform quite poorly where un-
bounded dependencies are concerned, i.e., dependencies
such that there is no theoretical limit on the distance be-
tween head and dependent. Often, parses for such construc-
tions are unsystematic and unpredictable, and we are conse-
quently forced to augment them using the sub-optimal lin-
guistic output across various NLP pipelines. For example,
consider the sentence

They tasted the specimens to identify them.

which contains a purpose clause, namely, to identify them.
In CoreNLP’s analysis for this sentence, the matrix verb
tasted to identify via advcl (adverbial clause), the Stan-
ford Dependency category that includes purpose clauses
(De Marneffe et al., 2014). However, if tasted is replaced
by were tasting, CoreNLP returns a parse in which were
tasting is related to specimens via dobj, which is turn re-
lated to identify via the tag acl (adjectival clause). In other
words, a simple change in verb tense can result in a funda-
mentally different analysis that overlooks a key semantic
relation.
In addition to freely available NLP components and
pipelines, we make use of in-house technology and infras-
tructure. Within the Free Linguistic Environment (FLE)

3United States v. Martinez-Maldonado, United States
Court of Appeals, First Circuit Nos. 12–12 89, 12–1290 see
http://media.ca1.uscourts.gov/pdf.opinions/
12-1289P-01A.pdf.

project (Cavar et al., 2016) we developed multi-word mor-
phological analyzers using a two-level transducer frame-
work as made available in the Foma morphology compiler
(Hulden, 2009). In this way, we are able to generate Finite
State Transducers (FST) that recognize single- and multi-
word named entities and jargon specific to the legal domain,
such as amicus curiae. The recognized terminology is an-
notated using a “legal” tag, as well as semantic sub-type
information, wherever applicable. In our case, the termi-
nology is augmented with domain specific tags, for exam-
ple indicating that an expression like “FMLA”4 is typical
in the labor law domain, while “exclusive rights” indicates
the copyright law domain. An FST can read in a term like
“FMLA” and output an analysis listing its tag(s) and sub-
tag(s), much like a two-level morphological analysis in the
manner of (Koskenniemi, 1983).
To be able to generate deeper linguistic analyses that
cover linked constituent structure, functional relations, and
morpho-syntactic and semantic properties, we work with
a (Probabilistic) Lexical Functional Grammar (Kaplan and
Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001; Cavar et
al., 2016) based parsing system. Such a parsing system
generates syntactic structures that encode scope relations
between sentential (or clausal) elements, which is essen-
tial in, among other things, semantic processing of quanti-
fiers, time reference, and negation. The FLE project is re-
lated to the Xerox Linguistic Environment (XLE) (Crouch
et al., 2011) project, which is the most significant and com-
plete implementation of the Lexical Functional Grammar
(LFG) framework (Kaplan and Bresnan, 1982; Bresnan,
2001; Dalrymple, 2001) in a grammar engineering envi-
ronment. It comes with the additional advantage of be-
ing well-documented, in, among other sources, a grammar
engineering textbook (Butt et al., 1999), official technical
documentation (Maxwell and Kaplan, 1996), and various
online material (Crouch et al., 2011).
The analytical strength of LFG-based parsers can be exem-
plified using a simple example. The sentence They offer
several justifications for this position5 would receive a con-
stituent structure (or c-structure) analysis as in figure 1.
The corresponding functional structure (or f-structure) is
given in figure 2.6
The two representations are linked, such that every tree
node has a link to an attribute-value-matrix (AVM) in the
f-structure. The f-structure provides a rich set of morpho-
syntactic and semantic features that are extremely useful
for higher level analysis of semantic relations between ar-
guments. The c-structure provides a phrase-structure anal-
ysis that represents scope relations between the sentential
arguments and modifiers. It is in particular essential for the
processing of scope of negative elements, operators, and
quantifier.
Such rich representational output allows us to map the con-

4Family Medical Leave Act, Public Law No. 103–3, 29 U.S.C.
Sections 2601–2654 (1993)

5See footnote 3.
6The output for the c- and f-structure in figures 1 and 2 was

generated using the XLE-Web interface http://clarino.
uib.no/iness/xle-web. See for example Meurer et al.
(2016).
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Figure 1: C-structure

Figure 2: F-structure

tent of the target sentence to a KR by converting the main
predicate to a triple, i.e. predicate offer – subject they – ob-
ject justification. The subject they would be linked to a real
referent (antecedent) in a given context using anaphora res-
olution and correference analyzers.
Additional properties for all arguments can be extracted

from the f-structure in conjunction with sentential features,
as well as dependency relations and functional roles of
clausal elements.
To map content from unstructured text (a list of sentences
and clauses), it is essential to identify the tense informa-
tion, mood, or voice of the sentence, any scope relations
between constituents and clauses within the sentence, and
quantifiers or semantic operators, such as whether a negat-
ing element in a clause scopes over the entire clause or
merely an isolated phrase, and whether it has scope over
the matrix clause and thus potentially all embedded clauses
in its scopal domain. It is also crucial to detect voice so as
to determine the directionality of a relation in a tuple. The
examples The plaintiff accused the defendant of breach of
contract and The defendant was accused of breach of con-
tract by the plaintiff would receive the same directionality
representation of the KR predicate relation. This is obvi-
ously not true for a sentence like The plaintiff was accused
by the defendant of breach of contract. Likewise, if the
sentence uses future tense, it is not a factual or assertive
statement that should be integrated into a common KR that
represents factual knowledge, as for example in Google will
buy Apple. Also, a past tense assertive statement embedded
under a hypothetical or future tense matrix clause does not
represent concepts and relations that should be part of a KR,
as for example We do not believe that Google bought Apple.
Our NLP components are capable of detecting mood, tense,
and voice in the input sentences. Additionally, they can pre-
dict clausal structures of complex sentences as well as the
scope relations between these clauses. This is in partic-
ular relevant, when it comes to the correct extraction and
mapping of semantic relations in embedded contexts. If
an embedded clause with assertive content of the kind that
the plaintiff transfered the funds to the bank account can
only be interpreted if the matrix clause as for example “It
is true” is not negated, not using future tense or the sub-
junctive, and so on. The linguistic properties and the scope
relations between the clauses are essential to be able to cor-
rectly differentiate hypotheticals from factive assertions, or
guesses from wishful projections.
To extend this capability to legal language, we not only de-
velop our own domain specific adaptations of NLP com-
ponents and pipelines, we also post-process the outputs
of the aforementioned openly accessible NLP components.
The post-processing extends the linguistic analytical output
and also corrects systematic errors of certain NLP compo-
nents.7
In the FLE implementation we use a probabilistic model of
the c-structure parser backbone as well as a probabilistic
unification algorithm over Probabilistic Directed Acyclic
Graphs (PDAG) for the AVM and f-structure representa-
tions. This specific version of an LFG-type of parser allows
us to engineer more robust grammars that can cope with

7Some such errors are construction specific. Coordination of
clauses as common in legal documents is systematically analyzed
as local phrase coordination. Predicative modifiers as for example
adverbial temporal constructions or prepositional location phrases
in syntactic parse trees are frequently attached to adjacent noun
phrases (low attachment), rather than the predicate. Many of these
mistakes can be corrected using simple post-processing steps.
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agreement violations or unification failures, as well as word
order violations or complexities that other NLP pipelines
cannot process. The grammars that underly such a parser
can be engineered and trained using corpora and distri-
butional models over syntactic trees and morpho-syntactic
features.
Our architecture wraps all available NLP components in a
Remote Procedure Call (RPC) (Microsystems, 1988) set of
micro-services and lets each service process each input sen-
tence in parallel. The outputs of each component are eval-
uated, scored and transformed into a synthesized unique
Linguistic Data (LingData) data structure (or object). This
LingData object decides on a uniform representation of the
data, i.e. PoS-tags and dependency relations are normal-
ized, clause boundaries are added or removed, etc. We
implemented a specific extension that interprets constituent
structure trees and dependency graphs into phrasal scope
relations that allow us to query the hierarchical relations be-
tween all tokens, phrases and phrasal nodes in the sentence
structure. This implies that we can not only identify a nega-
tion in a clause, but also the correct structural scope of it. In
the sentence the plaintiff did not violate corporate policies
the negation is correctly identified as sentential negation,
while in the sentence the plaintiff violated corporate poli-
cies and not federal law the negation scope would be local
over federal law only.
The resulting LingData objects thus contain complex lin-
guistic properties and annotations. These are accessible us-
ing class specific methods. Currently the class is only avail-
able as a Python implementation. In future versions we will
provide a C++ and a Go implementation as well.
The different LingData objects generated by parallel NLP
pipelines are then combined into a single, hopefully com-
plete and correct, analysis, using mapping of the linguistic
analyses and extensions generated from the outputs of the
NLP components in a Unification method.
Such a parallel architecture is complex and computation-
ally expensive. It can, however, be easily scaled given our
choice of a JSON-based RPC micro-services infrastructure
regulated through a core processing dispatcher or manager.
This infrastructure frees us from distracting programming
language, operating system, or other technical dependen-
cies, as components can be swapped, added, coupled, or
removed as and when the need arises. For most of the ad-
vanced NLP components and pipelines the loading time of
models is eliminated, since the components run in daemon
mode and communicate over TCP/IP with the clients.

4.1. Knowledge Graph Mapping
As described above, the core semantic relations extracted
by isolating the core predicate in a clause and its dependent
functional phrases provide the core relational elements or
sub-graph for the KR. Additional processing is necessary
to map these attributes and properties to relations between
concepts or concept attributes. For example, the construc-
tion the plaintiff was employed as a clerk in the defendant’s
firm could imply that the plaintiff is a clerk or that the con-
cept of the asserted plaintiff in the KR has an attribute-value
specification profession – clerk. We have an independent
model for such mappings that allows us to generate graph

relations for the specific domain or use-case.
The processing of semantic and pragmatic relations allows
us to expand the KR even further. To be able to process
implicatures or presuppositions, the NLP output needs to
provide detailed information about nominal elements or
phrases in the clauses. For example, if the direct object in a
clause is a definite and specific noun phrase like the plain-
tiff bought the blue car, implicatures that can be generated
to extend the KR representation of the situations and events
would include factual statements like there were multiple
cars available that the plaintiff could have bought and no
other of these cars is blue. Likewise, a statement like the
plaintiff was petting his dog presupposes that the statement
the plaintiff owns a dog is true as well. While most of these
implicatures and presuppositions will strike human readers
as trivial, they can provide valuable information for auto-
matic processing and KR generation. Moreover, some se-
mantic and pragmatic side-effects so inferred might not be
easily accessible to the reader at all – a situation that is par-
ticularly frequent in highly specialized, knowledge-based
domains like legal reasoning.
For the processing of such relations we build construction-
specific mappings for the domain, the particular language,
and linguistic constructions in general. The mapping of
definite and specific noun phrases to imply the existence
of a super-set is an example of a linguistic property that can
be applied universally in all linguistic domains. Other such
mappings are language-specific and can depend on cultural
peculiarities. By contrast, many of the semantic and prag-
matic properties are domain-specific, and their specification
and definition in specific NLP components requires the su-
pervision and involvement of trained domain experts (legal
professionals, for the present case).
At the graph level we use two commercial environments:
Neo4J and Stardog. Both products are advanced graph
databases with different capabilities when it comes to se-
mantic processing. Neo4J serves as an experimental sim-
ple, but highly performant and scalable, graph representa-
tion system where we do not make use of extended seman-
tic technologies like OWL-based ontologies (W3C OWL
Working Group, 2012; W3C OWL Working Group, 2009)
or reasoning (using a Description Logic framework).See
for example Antoniou and van Harmelen (2004). Stardog,
by contrast, functions as an extended graph with OWL-
backing assertions of facts, concepts, relations, and at-
tributes. We augment Stardog with Pellet (Sirin et al., 2007)
as a reasoner. One goal is to use the ontology as a classi-
fication system for concepts that allows us to generate ex-
tended properties for asserted individuals. For example, if
an ontology defines CEOs to be humans, and humans have
birthdays, gender and parents as properties, when we as-
sert that John Smith is CEO, the system can automatically
extend the properties of the concept John Smith to include
the implications (John Smith) has a birthday, has gender,
has parents, etc. This level of semantic expansion using
common reasoners (e.g. Pellet) augments potentially sparse
assertions and makes hidden facts and circumstances ex-
plicit and available for search and graph-based comparison
or analysis.
Another goal is to detect conflicts in assertions related to
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the types of concepts. For example, if we assert that Grun-
gle Inc. is a company, and the ontology encodes taxonomic
relations or the concept hierarchy that a CEO is a (isA)
human, an assertion of the type Grungle Inc. is the CEO
of Sprackets Inc. can be flagged or rejected as a viola-
tion of base relations formulated in the ontological concept
relations. While common OWL-based assertion handling
would not be able to catch such violations, extensions of
reasoners like Pellet can be used to detect conflicting asser-
tions of this kind.8
Our analysis of different graph databases for the back-end
storage of a knowledge graph in our system did also in-
clude the Apache Jena (jena.apache.org) environ-
ment. Due to obvious limitations here, we will extend the
discussion of the suitability of knowledge graph storages
for our purposes to subsequent publications. In addition to
these free systems we made arrangements to evaluate other
commercial graph database systems as for example Tiger-
Graph (www.tigergraph.com), where our main inter-
est lies in performance for search and graph comparison
with large knowledge graphs.

5. Discussion
Given the limits of this article, it is of course impossible to
provide an exhaustive list of the capabilities and advantages
that deep NLP and semantic processing using Description
Logic, OWL ontologies, and reasoning can bring to le-
gal language processing. We hope we have nevertheless
been successful in conveying the impression that they are
prodigious, representing an evolutionary leap in applica-
tive power. Mapping case law documents, in particular the
opinion and the holding, to KRs allows us to search over
the document base via graph similarity.
Mapping specific concepts to hypernyms introduces an
conceptual abstraction layer that allows us to identify cases
with concrete reference to for example injury involving a
semi-truck can be found by searching for injury involving a
vehicle or even car.
Mapping concrete case files onto a graph representation in
a systematic way allows us to use graph similarity search to
identify semantically related cases, holdings, and opinions.
Using comparisons of graphs within a similar concept and
relation space allows us to identify conflicting opinions in
the case law, or conflicting facts in other document types.
These types of conflict studies open up new possibilities for
the automatic analysis of case law holdings and opinions.
We are aware of the fact that we owe the reader a detailed
explanation of the architecture, performance, and issues re-
lated to the NLP components and architecture.
One serious problem for us in the current situation is that
we do not have any objective measure for the performance
of our system, due to the lack of gold standard resources
and corpora. While we can describe the technical and run-
time behavior, the accuracy of some NLP components, we
cannot yet easily assess on a larger scale the extraction of
semantic relations and concepts.

8The developers of Pellet and Stardog informed us that this is
a possibility in their system, and we assume that this is missing in
other non-OWL-based graph-databases. Such restrictions can also
be implemented in the free and open Apache Jena environment.

Due to a lack of appropriate resources, our evaluation right
now can only be based on a usefulness study with paralegals
and law firm employees.
Due to space limitations, we defer the exposition and dis-
cussion of the results of experiments and concrete appli-
cations to the concrete conference presentation and subse-
quent publications.
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