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Abstract
Validation of experimental results through their replication is central to the scientific progress, in particular in cases that may represent
important breakthroughs with respect to the state of the art. In the present paper we report on the exercise we undertook to replicate the
central result of the experiment reported in the Bogdanova et al. (2015) paper, Detecting Semantically Equivalent Questions in Online
User Forums, which achieved results far surpassing the state-of-the-art for the task of duplicate question detection. In particular, we
report on how our exercise allowed to find a flaw in the preparation of the data used in that paper that casts justified doubt on the validity
of the breakthrough results reported there.
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1. Introduction
This paper reports on the replication of the research results
reported in Detecting Semantically Equivalent Questions
in Online User Forums (Bogdanova et al., 2015), a paper
published in the proceedings of the 19th Conference on
Computational Natural Language Learning (CoNLL) and
henceforth referred to as DSEQ.
The DSEQ paper caught our attention — and the attention
of everyone doing research on Duplicate Question Detec-
tion, we guess — by reporting an accuracy of over 92% on
the detection of semantically equivalent questions. This is
an accuracy score that was more than 15 points above the
results achieved in the related literature for that task (Nakov
et al., 2016, Task B), representing a notable progress of
20% with respect to the state of the art.
This result placed DSEQ at the forefront of the research
on Duplicate Question Detection (DQD). As such, while
driven to advance our understanding of DQD and to im-
prove its application, we considered the replication of
DSEQ as being essential to our research on this topic.
The DQD task consists of classifying two input interrog-
atives sentences on whether they are a duplicate of each
other, as in the following example:

(A) Can I install Ubuntu and Windows side by side?

(B) How do I dual boot Windows along side Ubuntu?

Two questions are semantically equivalent if they can be
adequately answered by the same answer.
DQD belongs to the family of Semantic Text Similarity
(STS) tasks, which assess the degree to which two textual
segments are semantically similar. While the DQD task
deals with the semantic equivalence of interrogative sen-
tences, it is implicitly understood that the broader STS tasks
concern only declarative sentences.

STS and DQD are language processing tasks of the utmost
importance, both having been addressed in SemEval com-
petitive shared tasks: STS since 2012 (Agirre et al., 2012)
and DQD since 2016 (Nakov et al., 2016). Both tasks have
been useful to support conversational interfaces and chat-
bots, in general, and online question & answering (Q&A)
community forums, in particular.
One of the challenges faced by Q&A communities (online
user forums) is that different users at different times fre-
quently post duplicate questions that have already been an-
swered before, rendering the forum potentially inefficient
and demanding time-consuming human moderation to flag
such duplicates. Adopting an automated system that can
detect duplicate questions provides a computational tech-
nique to mitigate or solve this issue.
Section 2 provides an overview of the original DSEQ paper.
The replication effort, described in Section 3, turned out to
be a challenging task, requiring full attention to details in
the implementation of the classifiers to work out unreported
assumptions. We conclude that the replication can be suc-
cessfully achieved but only if the segments in the pairs be-
ing classified already contain information as to their status
as reciprocal duplicates, thus affecting the validity of the
results reported in DSEQ.
Additionally, we report on experiments we undertook af-
ter we cleaned the data from these indications of the status
of the segments in the pairs, which obtained results in the
range of the state of the art results reported in the literature
for other approaches and methods.
We address the resulting implications along with other con-
siderations in Section 4.

2. The DSEQ paper
This section provides an overview of DSEQ. For the full
details, we direct the reader to the original paper.



The DSEQ paper “aims to detect semantically equivalent
questions in online user forums”. The authors follow
the usual definition used in the field of DQD according
to which two questions are considered to be semantically
equivalent if they can be adequately answered by the same
answer.
DQD systems usually resort to supervised machine learn-
ing methods, which require labeled data to train a model.
For DQD, these data consist of several pairs of text seg-
ments with each pair (i.e. the two questions) being labeled
as either containing duplicate or non-duplicate segments.
DSEQ implemented different supervised machine learning
systems as classifiers in a DQD task by resorting to pairs
of questions annotated as duplicates or not duplicates. The
aim of machine learning algorithms is to generalize over the
training data, in our case, a semantic generalization that is
aimed to classify testing data — unseen pairs of questions
— and correctly assesses if they are semantically equiva-
lent, i.e. duplicates.
This is a challenging task given that all questions can be
rephrased in multiple ways. However, the recent boost in
the amount of available data and computational power sup-
ported the application of machine learning techniques, in-
cluding neural network models. This motivated DSEQ to
compare standard machine learning methods and a convo-
lutional neural network on a DQD task.
In the next subsections, we briefly describe the data used for
the training of the machine learning models, the machine
learning methods resorted to, the experiments performed,
and the results reported.

2.1. Data sets used
Stack Exchange1 is one of the largest Q&A online commu-
nities, with over 100 million monthly unique visitors. Like
in all Q&A online communities, users can ask questions,
get answers from other members of the community, and use
a Q&A search engine to find existing questions. Stack Ex-
change is organized in such a way that each question con-
sists of a title (usually a short, one-sentence formulation of
the question) and a body that provides further details; these
are followed by a thread of possible answers, ranked by the
community.
Stack Exchange allows its users to tag posted questions as
duplicates of previously posted questions. These tagged
questions are later manually verified by moderators and
definitely labeled as duplicates or not. If a question is
marked as a duplicate of an already existing one, the mod-
erators may choose to keep it as a duplicate and link it to
that pre-existing question. In this way, duplicate questions
(i.e. the different ways of asking the same question) end up
linked to one and only one canonical formulation for that
question.
DSEQ used the data from two Stack Exchange sub-
communities: Ask Ubuntu2, for users and developers of
the Ubuntu operating system, and META Stack Exchange3,
for meta-discussion on issues regarding the Stack Exchange
network itself.

1https://stackexchange.com/
2https://askubuntu.com/
3https://meta.stackexchange.com/

The Stack Exchange network provides the user-contributed
content from all its Q&A sub-communities by means of
publicly available periodic data dumps.4 The data dumps
include the questions (title and body), the answer thread,
and meta data regarding each question, in particular its sta-
tus as a duplicate. Figure 1 shows an example of a duplicate
entry.
DSEQ used the Ask Ubuntu data dump from May 2014 and
the META Stack exchange dump from September 2014.
The instances were randomly selected and class-balanced,
resulting in a training/testing sets of 24k/6k pairs for Ask
Ubuntu and 20k/4k for META. The validation set is 1k pairs
for both. Table 1 summarizes this information.

Data set Training Testing Validation

Ask Ubuntu 24k 6k 1k
META 20k 4k 1k

Table 1: Data sets used in DSEQ for the training, testing
and hyper-parameterization optimization (validation set) of
the machine learning models. Each instance consists of a
pair of questions with a corresponding label (duplicate or
non-duplicate).

Regarding data preprocessing, the authors specify that
NLTK (Bird et al., 2009) was used for tokenization and that
all links were replaced with a unique string.
Each question is taken as a whole, that is, as the concatena-
tion of the title and body parts.

2.2. Methods used for DQD
DSEQ compares (i) a rule-based and traditional similarity
measure based on word overlap with shingling (n-grams)
and a Jaccard coefficient; (ii) a standard machine learn-
ing method, namely Support Vector Machine (SVM); and
(iii) a neural network architecture with convolutional layers
(CNN).

The Jaccard coefficient is computed as a rule-based sys-
tem. First, a set of n-grams (with n ranging from 1–4) is
created from the training data. Second, a Jaccard coefficient
for the pairs of questions is computed as

J(d1, d2) =
S(d1)

⋂
S(d2)

S(d1)
⋃
S(d2)

,

where S(d1) is the set of n-grams extracted from the first
segment (d1) and S(d2) the set of n-grams extracted from
the second segment (d2). Segments d1 and d2 are deemed
to be duplicate if the Jaccard coefficient is above a threshold
that is empirically determined by measuring the coefficient
of all pairs of questions in the training set.

The SVM is a machine learning algorithm that finds a hy-
perplane that optimizes the division of a data set into two
classes. In an SVM, the data set instances are transformed
into feature vectors, which are data points in a shared space.
Then, a hyperplane is iteratively computed aiming at the
best separation of the vectors regarding their classes.

4https://archive.org/details/stackexchange



Figure 1: A question data and meta data from the META Stack Exchange dump. For the sake of readability, the HTML
entities were normalized and the content of the Body attribute (line 7) is shown separately under its own tag <body>
(lines 18–32).

Resorting to the set of existing n-grams (n ranging from 1–
4), for each pair of questions, DSEQ uses a vector with the
following features:

1. The one-hot encoding of the n-grams in the first ques-
tion; that is, for each n-gram, a boolean value indicat-
ing its occurrence in the first question.

2. The one-hot encoding of the n-grams in the second
question.

3. The overall normalized count of each of the n-grams
in both questions.

A radial basis function kernel is used to measure the simi-
larity between feature vectors. The DSEQ’s authors men-
tion that a grid search was used to optimize the values of
the hyper-parameters C and γ, and a frequency threshold
was applied to reduce the features dimension.

A combination of Jaccard coefficient and SVM machine
learning algorithm was also used. To this purpose, the SVM
feature vectors were created as previously described and

extended to include an extra field: for each pair, the Jaccard
coefficient for that pair was considered in the corresponding
feature vector.

A Convolutional Neural Network (CNN) is one of many
neural network architectures that map an input to an output
(class) resorting to layers of connected neurons. Typically,
in a neural network each neuron receives input values that
are used to output a computed value according to an activa-
tion function, such as a binary step or a hyperbolic tangent
function. The input values of neurons are usually connec-
tions from other neurons. Each connection has an intrinsic
weight, used to increase or decrease the values sent through
them across neurons, strengthening or weakening the sig-
nal.
In the CNN used in DSEQ, each layer is connected consec-
utively (feedforward), with the output of each layer being
sent to the next layer. The neural network receives each of
the questions in the pair, with both inputs sharing the same
neural network layers, in an architecture called Siamese
neural network.



• In a word representation layer, each word of the sen-
tence (question) is transformed into a vectorial repre-
sentation, also known as a word embedding or distri-
butional semantic vector.

• A convolution layer then computes a new vecto-
rial representation by applying a dimension reduction
technique to a matrix populated by all the word vectors
from the previous layer. The computation can be ob-
served as a compositional compression, encoding the
semantic knowledge of the sentence.

• A final layer compares the representation obtained
from both questions, using a cosine similarity func-
tion. This value is passed on to an activation function
that determines if it is, or not, a duplicate pair.

The neural network learns with the training set to generalize
the DQD task by iteratively changing the weights of the
neural connections while aiming to output the correct class
for each training instance.

2.3. Experiments
Four types of experiments are reported in DSEQ: (i) a com-
parison of the different DQD methods described above;
(ii) an assessment of the impact of using domain-specific
distributional semantic vectors; (iii) an assessment of the
impact of varying the size of the training set; and (iv) an
assessment of performing domain adaptation.

The comparison of the DQD methods evaluated each
method with different parameterizations over the Ask
Ubuntu data set. Two experiments were run, the first with
a 4k training set and the second with the full 24k training
set. The question title and question body were used as in-
puts in three different ways, namely (i) using the whole title
and body;5 (ii) removing programming language code snip-
pets; and (iii) prefixing programming language code snip-
pets with a special tag. In all cases, the 1k validation set
was used to tune the hyper-parameters of the algorithms.

The assessment of the impact of using domain-specific
distributional semantic vectors was twofold. It (i) eval-
uated the accuracy of the CNN using already trained dis-
tributional semantic vectors with different dimensions (50,
100, 200 and 400); and (ii) evaluated different distributional
semantic vector space trained using Wikipedia data as gen-
eral domain data, and the Ask Ubuntu data as in-domain
data.

The impact of varying the training set size was assessed
by profiling the different systems using different dataset
sizes, from only 100 question pairs to the full 24k question
pairs.

The domain adaptation experiment interchanged the CNN
training data. Different corpora were used for training the
machine learning algorithm and the distributional semantic
vectors. The evaluation was performed with the META test
set.

5Taking into account the already mentioned NLTK tokeniza-
tion and links normalization.

2.4. Results
In the first experiment, when comparing the different DQD
systems, the combination of SVM with Jaccard performed
better than either of its parts individually. The hybrid sys-
tem obtained a 77.4% accuracy, with the normalized input
(removing data related to programming code), C = 32.0
and γ ≈ 3.05 × 10−5. The CNN obtained the best result,
92.4% accuracy, with the normalized input, a 200 vector
dimension, k = 3, clu = 300 and γ = 0.005.
In the second experiment, the study of the impact of
domain-specific distributional semantic vectors, by increas-
ing the vectors dimension, the CNN’s accuracy improved.
Regarding the use of general domain trained distribu-
tional semantic vectors from Wikipedia data against the in-
domain Ask Ubuntu ones, the in-domain vectors supported
a better accuracy: 85.5% accuracy was obtained with the
former and 92.4% with the latter.
The third experiment showed that enlarging the training
data improved the accuracy of all the systems.
In the fourth experiment, with the META data set, CNN
obtained the best score, 92.68% accuracy, when using the
META training data in both the training of the CNN and in
the training of the distributional semantic vectors.
In Table 2 the best scores obtained in DSEQ with different
data sets are reported.

Data set Accuracy

Ask Ubuntu 92.90%
META 92.68%

Table 2: The best scores reported in DSEQ for the Ask
Ubuntu and the META data sets using CNN.

3. Replication of DSEQ
The present Section describes our replication of the experi-
ments reported in DSEQ paper as providing the best results,
just indicated in Table 2.
Neither the data sets nor the software with the implemen-
tation of the DQD systems used in DSEQ were made pub-
licly available. We attempted to obtain these data sets and
more details about the hyper-parameters of the CNN but
our emails received no answer.
When acquiring the data for the replication exercise, we
realized that the Stack Exchange data dumps are frequently
updated, with older data dumps being deleted. Thus, at the
time of our exercise, we only had access to data dumps from
September 2014, given that data dumps from May 2014 had
already been removed from the respective distribution page.
Table 3 shows the differences between the dumps used in
the present work and in DSEQ.
Our preparation of the data — for the training of the CNN
and the distributional semantic vectors — comprised the
following procedures:

• Image removal.

• URL removal.

• Code snippet removal (i.e. <code> blocks).



Dump date
Data set Replication DSEQ

Ask Ubuntu Sep. 2014 May 2014
Meta Sep. 2014 May/Sep. 2014

Table 3: Dump dates for the data sets used in present repli-
cation and in DSEQ.

• Text tokenization, using the Stanford Tokenizer (Man-
ning et al., 2014).

• Lowercasing of all tokens.

For the training of the distributional vectors we used the
DeepLearning4j toolkit6 with the built-in skip-gram algo-
rithm.
The vectors were trained with a dimension of 200. The
values for all the other parameters, which are not described
in the DSEQ paper, were taken from the word2vec vanilla
parameters.
Table 4 presents the data sets used for the distributional se-
mantic vectors training.

Data set Vector size Types Tokens

Ask Ubuntu 200 68k 38M
META 200 30k 19M

Table 4: Data sets used in replication to train the distribu-
tional vectors and respective sizes.

The data sets acquired were organized to approximate the
organization of DSEQ data sets by using the same sizes for
the training, testing and validation subsets. See Table 5 for
a detailed rendering.
The implementation of the CNN was done using the Keras
Python library (Chollet and others, 2015) with Theano
(Team, 2016) as the back-end.
For the CNN hyper-parameters, we used the same values
as in the DSEQ, when they were reported. The remain-
ing hyper-parameters, namely batch size and number of
epochs, were empirically determined by experimentation.
Table 6 shows the values for the main hyper-parameters
used in the CNN replication.
The evaluation of the CNN over the Ask Ubuntu data set
achieved a 94.1% accuracy, and 94.2% accuracy over the
META data set.
The replicated models show a performance that is very sim-
ilar, or even slightly better, to the one reported in DSEQ.
Table 7 collects the relevant scores.

3.1. The problematic clue strings
When preparing the data sets for the replication exercise,
we realized that removing the URLs from the data dumps
as described in DSEQ was not enough to produce unbiased
data sets.
We noticed that duplicate questions contain information
that provides explicit clues as to their status as a duplicate.

6http://deeplearning4j.org/word2vec

In particular, at the start of the body content, duplicate
questions contain the string Possible Duplicate:
followed by a link to the canonical question of which the
question at stake is a duplicate. This is illustrated in Figure
1, in lines 21–23.
Note that these strings, with this explicit indication of the
solution of the DQD task, cannot be left in the data since
they provide direct clues for the answer the system should
optimally deliver — i.e. whether the questions are duplicate
or not.
The replication results we reported above in Table 7 were
obtained when such clues were kept in the data.
It is not indicated in the DSEQ paper if these clue strings
were kept in or removed from the data sets in the experi-
ment reported therein. But further experiments we under-
took provide a strong indication that they were not.
We repeated the same experiments by changing only the
way the data sets were prepared, in particular by removing
such clue strings from them. The scores obtained in this
second round of replication — with data sets cleaned from
these clue strings — are in line with the state of the art that
existed before the DSEQ paper.
Table 8 presents the comparison of our two replication
rounds against DSEQ. When removing the clue strings
from all the data sets the accuracy drops in all the exper-
iments; when keeping them, all scores are very close to the
ones reported in DSEQ.
This very likely indicates that in the experiments reported
in DSEQ the clue strings in to duplicate questions were not
removed from the data sets used in its experiments.
The data and models used in the replication exercise re-
ported here are available at this GitHub page.7

Due to a couple of implementation details that were left
unreported in DSEQ — and we had to figure out by our-
selves for the replication exercise (cf. Table 6) — and due
to slight differences in the data set dump dates (cf. Table 3),
our replication settings are not fully identical to the ones of
DSEQ. However, given the results obtained in the differ-
ent rounds of replication and how they are closely aligned
with results from the DSEQ (in the first round) and from
the literature (in the second round), these differences are
not enough to prevent the main conclusions coming out of
the present replication exercise.

4. Conclusions
In the present paper, we describe the exercise we undertook
of replicating the experiment described in (Bogdanova et
al., 2015), which was reported to outperform by 20% the
state of the art in the task of Duplicate Question Detection
that was contemporary to the publication of that work.
As in the literature on Duplicate Question Detection the
progress reported in different papers typically represent a
much smaller delta of progress, this result appeared as an
outstanding breakthrough in this area, to which, moreover,
none of the subsequent advances reported in the literature

7 https://github.com/nlx-group/Replication
-of-IBM-Team-s-Duplicate-Question-Detection
-Experiment



Data set Total pairs Duplicates Training Testing Validation

Ask Ubuntu 167,765 17,115 24k 6k 1k
META 67,746 19,456 20k 4k 1k

Table 5: Splits and sizes of the data sets used in replication to train the CNN.

Parameter Value Description

d 200 Size of word representation
k 3 Size of k-gram
clu 300 Size of convolutional filter
γ 0.005 Learning rate

batch size 1 Examples per gradient update
epochs 20 Number of Training epochs

Table 6: CNN training hyper-parameters. Only the first four
parameters were explicitly provided in DSEQ.

Data set Accuracy

DSEQ Ask Ubuntu 92.90%
META 92.68%

Replication Ask Ubuntu 94.10%
META 94.20%

Table 7: Performance results of DSEQ and of the present
replication exercise, using the CNN model for both data
sets.

had come close.8 That was the major motivation for our
replication exercise.
The replication exercise reported here permitted to find out
that the best scores described in (Bogdanova et al., 2015)
can be replicated only when the data sets are not properly
prepared. In particular, they can be replicated only when
clue strings in the data — with the explicit indication that
questions are duplicates — are not removed.
Our replication exercise permitted also to find out that when
the data sets are cleaned from these clues, as they should,
the accuracy of those very same models drops sharply to
scores in line with the state of the art scores reported in the
literature contemporary to that paper.
This casts justified doubts on the validity of the break-
through result reported, indicating a jump of 20% with re-
spect to the state of the art, that does not hold.
The current study also highlights the importance of repli-
cation as a first class citizen in research on language tech-
nology. If this replication exercise reported here had not be
undertaken, the community would have remained with an
incorrect believe about what would be the state-of-the-art
for the task of Duplicate Question Detection.

8Among several others, see the results of SemEval2017, Task
3, Subtask B, reported in (Nakov et al., 2016), and the recent ad-
vances obtained by our team, reported in (Rodrigues et al., 2018),
(Rodrigues et al., 2017), (Saedi et al., 2017) and (Maraev et al.,
2017)

Ask Ubuntu META
Clues 4k full val. test val. test

Removed 71.8 73.8 73.3 57.3 55.7
Kept 91.8 92.3 94.1 96.1 94.2

DSEQ 92.4 93.4 92.9 92.8 92.7

Table 8: Accuracy (%) of CNN models over Ask Ubuntu
and on META data sets, with clue strings kept and with
clue strings removed in replication, compared to DSEQ.
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