
A Rule-Based System for the Transcription of Sanskrit from the Devanagari
Orthography to the International Phonetic Alphabet

Aalok Sathe
University of Richmond

28 Westhampton Way, Richmond, VA 23173, USA
aalok.sathe@richmond.edu

Abstract
We propose a new system for the transcription of Sanskrit text written using the Devanagari orthography, into the International Phonetic
Alphabet, and supplement it with free and open-source software. We make use of existing literature on closest known pronunciations
of sounds as well as prosodic and metric rules of syllabification using the Weerasinghe-Wasala-Gamage (WWG) algorithm for Sinhala,
adapted to Sanskrit. We further incorporate suprasegmental sound changes along with the assignment of syllable-weight-determined stress.

Keywords:Transcription, Sanskrit, IPA, Phonetics, WWG algorithm, Devanagari, Computational linguistics

1. Introduction
The language Sanskrit is one of the oldest classical languages,
and has a large amount of literature. For this reason, San-
skrit is a topic of frequent study in literature, culture, and lin-
guistics. One hurdle in this process of studying is often the
lack of an all-encompassing system of phonetic transcription.
Whereas the IAST1 and ITRANS2 are widely used today, and
will continue to be, they are but alternate means of represen-
tation of the same text, not fully capturing the phonological
and prosodic features of the language. Additionally, it is our
personal experience that even though systems such as IAST
exist, students of Sanskrit worldwide have varying pronun-
ciations of the same few sounds, seemingly approximated to
the inventory of their primary languages. For new learners
or even existing scholars, there can be a steep learning curve
in Sanskrit phonology. Hence, it would be beneficial to new
learners to have a system that would guide pronunciation as
accurately and consistently as possible.
Some newer tools seemingly try to address this issue. How-
ever, they either do not solve the problem at hand, or do so
inaccurately. Examples include the ‘ICU’ system for translit-
eration of Indic scripts (Viswanadha, 2002) as well as the
website “Ashtangayoga” (Steiner, nd). In the case of the
latter, we notice a lack of any indication of stress, syllab-
ification, as well as that of within-word and suprasegmen-
tal phonological phenomena whatsoever. One may disregard
these as ‘superficial’ details, but they are far from being that
as syllabification and stress play an important role in classi-
cal Sanskrit poetic composition. We propose an improved
system, hence, which we hope will serve as a convenient tool
for reference in the study of Sanskrit phonology. We de-
scribe a system for the transcription of Sanskrit text writ-
ten using its Devanagari orthography into the international
phonetic alphabet (IPA). We choose IPA in particular to en-
able near-completeness of representation of the best-known
pronunciations of Sanskrit sounds, rule-based syllabification
adapted for Sanskrit from the Weerasinghe-Wasala-Gamage
algorithm (‘WWG algorithm’) originally developed for the
Sinhala language, and syllable stress: a prosodic feature not

1International Alphabet of Sanskrit Transliteration
2Indian languages TRANSliteration

captured in any modern transcription system (e.g., IAST).
In this work, we aim to develop, based on existing work, a
rule-based algorithmic system, and a computer program to
supplement it, which will provide a consistent transcription
given well-formed3 Sanskrit text. We develop and distribute
software accompanying this system, and license it using the
GNU General Public License 3, to enable anyone to access
and redistribute the source code as well as develop other soft-
ware with the current implementation at its base. We believe
this software will in itself be a tool for preservation of tradi-
tional knowledge as well as help create newer ones.

2. Sanskrit Phonology
Sanskrit is a classical language with its origins in the In-
dian subcontinent, and its literature and texts being found
in present-day India, Nepal, and neighboring regions. San-
skrit is one of the official languages of India and shares close
common ancestry with most of the modern Indo-Aryan lan-
guages spoken in the Indian subcontinent today (Emeneau,
1956) as well as some of the older Indo-European languages.
It was recorded as the mother-tongue of about 14,000 peo-
ple in the 2001 census of India (Banthia, 2001). While the
effective pronunciations of Sanskrit sounds differ from re-
gion to region depending on the speaker’s own mother tongue
and regional linguistic influence, a unified approximation of
Sanskrit sounds has been proposed in several existing works
based on historical as well as present-day phonetic studies.
In what follows, we attempt to give a summary of Sanskrit
speech sounds.
In Sanskrit, there are multiple singular vowel sounds, as well
as diphthongs made by combinations of individual vowels.
The simple vowels are shown in table 1, and the diphthongs
in 2. All of these vowels, whether simple or compound (diph-
thong), may be considered as a whole unit in Sanskrit for the
purpose of prosodic analysis. Table 1 also shows the vowel
length, which must accordingly be considered during tran-
scription. Diphthongs are long vowels in Sanskrit. In ad-
dition, Sanskrit uses certain approximants and semivowels
and treats them in the general category of vowels. These are

3That is, one adhering to the rules of classical Sanskrit phonol-
ogy and Devanagari orthography

mailto:aalok.sathe@richmond.edu


Front Central Back
High इ ([i]), ई ([iː]) उ ([u]), ऊ ([uː])
Mid ϕ, ए ([eː]) अ ([ə]), ϕ ϕ, ओ ([oː])
Low ϕ, अा ([ɑː])

Table 1: Sanskrit speech sounds: simple vowels. Symbols on the left are short variants of the vowel, while those on the right
are long. In case a variant of a vowel does not exist, ‘ϕ’ is shown. Blanks denote vowels not in the Sanskrit phoneme inventory.

X X+इ,ए X+उ,अो
अ,अा ऐ ([ɑːi]) औ ([ɑːu])

Table 2: Sanskrit speech sounds: simplified rules of diph-
thong formation

ऋ ([ɹ̩]), ॠ ([ɹ̩ː])
ऌ ([l]̩), ॡ ([l ̩ː ])

Table 3: Sanskrit speech sounds: special vowels (sonorants).
The first row shows short and long syllabic alveolar approx-
imant sounds, respectively, while similarly, the second row
shows short and long lateral approximant ones.

shown in table 3. For simplicity, we will consider all of these
as vowels making up a single unit, just the way we do with
“regular” vowels. Now, vowel length will be the only addi-
tional consideration other than identity, for the purposes of
transcription.
We will base our transcription system upon existing literature
on the phonology of Sanskrit (Jamison, 2004) as well as a
system of correspondences between Devanagari text, IAST,
and IPA, in the work ‘The Original Pronunciation of San-
skrit’ (Zieba and Stiehl, 2002). We will hence establish a
mapping between Devanagari glyphs, their diacritic combi-
nations if any, and IPA symbols (Association, 1999). Table 4
shows the correspondences used for consonants and other
non-vowel sounds, while table 5 is the vowel and vowel-like
sounds’ counterpart. Sanskrit makes use of special symbols
for several compound consonants, which we will process us-
ing their constituent components. Fortunately, Unicode char-
acter combinations for Devanagari define such compound
characters in terms of their constituent components by de-
fault, making them easier to process. Although Sanskrit has
many complex phonological processes where sounds inter-
act (a popular one of which is sandhi), we need not encode
rules of such phonetic interaction other than those implied by
the orthography. This exclusion is because any phonological
combination that occurs (such as from sandhi) results into a
new phrase, which is written as-is in the orthography. It is
expected of an input phrase to be well-formed, i.e., to not
have any phonological inconsistencies per the rules of San-
skrit orthography. Given that this program will likely find
use in transcription of existing texts, this should not be an
issue in most cases.
We have taken the interpretation of sounds to be as close as
possible to what is believed to have been the pronunciation in
the classical Sanskrit era (Zieba and Stiehl, 2002; Jamison,

2004). One such noteworthy consideration is the differen-
tial pronunciations of a visarga, or the ‘◌ः’-terminal sound.
Today, the interpretation of the pronunciation of this sound
is slowly shifting towards a new trend: duplicating the vowel
sound of the previous syllable after ([h]). For instance, रिवः
would end as [-ihi] according this rule as opposed to [-h].
While this seems to be a rising trend, it did not always use
to be so, and the sound was supposed to be simply a [h]-
terminating one, without vowel duplication.

3. Rule-Based Transcription
In our program, we will use several one-pass processes to
fully transcribe a given text in linear time. In what follows,
we describe some of the orthographic intricacies that require
special attention in the design of the program.

3.1. Shorthand for Nasalization
The Devanagari Sanskrit orthography has several ways to in-
dicate the presence of a nasal sound. Presence of nasals in a
word is semantic, unlike some languages where it may have
a conditioned occurrence. Nasals may be one of six types:
five, derived from the conventional place of articulation (ve-
lar, palatal, retroflex, dental, and labial), and the sixth, simply
a nasalized articulation of any vowel. Conventionally, a nasal
consonant is only explicitly written when a phrase ends, or if
the upcoming character is a vowel.4 In case the nasal sound
is not explicitly shown, an anusvara is shown on the charac-
ter preceding it, and the actual sound corresponding to it is
inferred from the forthcoming sound at the time of reading.
For instance, if a word ends in a nasal sound, and the word
after it begins with a bilabial stop, then the nasal is inferred
to be [m]. When a sound does not belong to any of the five
places of articulation mentioned above (e.g., a fricative, or a
vowel), it shall be called the sixth case, and in this case, the
preceding vowel is nasalized, with no additional sound being
added. For instance, in the word संस्कृत ([sə̃̃s.kɹ̩.tə̪]), where
the anusvara’s circumstance is not one of the five types men-
tioned. The specific nasal sound to be used is inferred based
on the next sound, if one exists, or is taken to be [m], the
bilabial nasal sound, by default.

3.2. Handling the Default Schwa
A consonant character in Devanagari Sanskrit, unless explic-
itly marked halant (i.e., a schwa-less “partial” sound marked
using the diacritic ◌्), has an implied schwa. For instance,
ग may be transcribed as [ɡə], while to yield [ɡ], we would
need to mark a lack of schwa as ग्. Removal of schwa is
required when either explicitly marking a character halant,

4As classified in the several tables above. A vowel in the strict
phonetic sense is not meant here.



Vl. plosive Vl. aspirated Vd. plosive Vd. aspirated Nasal Approximant Fricative
plosive plosive

Glottal ह [ɦə]∗∗
Velar क [kə] ख [kʰə] ग [gə] घ [gʰə] ङ [ŋə]
Palatal च [tɕ͡ə] छ [tɕ͡ʰə] ज [d͡ʑə] झ [d͡ʑʱə] ञ [ɲə] य [jə] श [ɕə]
Alveolar र [ɹə]

ल [lə]∗ स [sə]
Retroflex ट [ʈə] ठ [ʈʰə] ड [ɖə] ढ [ɖʰə] ण [ɳə] ळ [ɭə]∗ ष [ʂə]
Dental त [tə̪] थ [t ̪h ə] द [d̪ə] ध [d̪ʰə] न [nə] व [ʋə]Labial प [pə] फ [pʰə] ब [bə] भ [bʱə] म [mə]

Table 4: Sanskrit speech sounds in Devanagari: consonants and non-vowel sounds. Merged cells indicate shared place of
articulation. ∗Lateral approximants. ∗∗Voiced fricative.

Base Diacritic IPA Base Diacritic IPA
अ ə आ ◌ा ɑː
इ ि◌ i ई ◌ी iː
उ ◌ु u ऊ ◌ू uː
ऋ ◌ृ ɹ̩ ॠ ◌ॄ ɹ̩ː
ऌ ◌ॢ l ̩ ॡ ◌ॣ l ̩ː
ए ◌े eː ऐ ◌ै ɑːi
ओ ◌ो oː अाै ◌ाै ɑːu
अं ◌ं əm अः ◌ः əh
ॐ oːm

Table 5: Sanskrit speech sounds: vowels and syllabic sounds.

or when combining it with another vowel, in which case, the
vowel combination overrides the schwa. The way Devanagari
diacritic combinations work in Unicode are from the point
of view of typographic convenience. However, during tran-
scription, we are required to explicitly remove the schwa, as
demonstrated in the following example: गो = ग + ◌ो is the
way diacritic combination takes place in terms of Unicode
characters. However, phonologically speaking, it is गो = ग
+ ◌् + ओ ([ɡoː]), since we are removing the schwa and ex-
plicitly adding another vowel, instead of superficially dealing
with diacritical marks. This needs to be taken care of during
transcription, since, at the surface level, it is not explicit what
underlying phonological process is taking place.

3.3. Syllabification
For syllabification, we implement the WWG algorithm
(Weerasinghe et al., 2005) adapted to Sanskrit (Dasa, 2013).
In the original study, the algorithm was developed to account
for a majority of the Sinhalese vocabulary which has Sanskrit
or Pali origins, as well as a large number of direct borrowings.
In the same study, the authors note that the algorithm would
be similarly applicable to Sanskrit with some modifications.
As shown in algorithm 1, we use groups of vowel-consonant-
vowel clusters (of the kind VBCnCn−1 . . . C2C1VA, where
n ≥ 1) for syllabification. Note that a cluster is not a syllable
unit, but simply a device to locate syllable boundaries. We
apply rules based on the number of consonants in the mid-
dle consonant cluster, i.e., n. Based on this length, prosodic
syllabification conventions, we mark the boundaries of the
syllables. We reuse boundary vowels, so a vowel that was pro-

cessed while considering the current cluster will be included
again to spot the next cluster. We achieve this by keeping
track of indices where clusters began and ended.

Algorithm 1:WWG Algorithm adapted to Sanskrit
Input: Sanskrit text to be syllabified
initialize scope at the beginning of text;
while end of text not reached do

move to next VBCVA, where C is a consonant
cluster;
if length of cluster C = 1 then

mark syllable break after VB ;
else if length of cluster C = 2 then

mark syllable break after first C from left;
else if length of cluster C = 3 then

if third consonant from left = र् or य् or first and
second consonants are stops then

mark syllable break after first C from left;
else

mark syllable break before first C from
right;

else
if first consonant from right = र् or य् then

mark syllable break before second C from
right;

else
mark syllable break after least sonorous C;

end
Result: Syllabified Sanskrit text

3.3.1. Examples
In what follows, we provide some example Sanskrit words to
demonstrate syllabification as carried out using algorithm 1.
For ease of reading, we highlight the consonant cluster in con-
sideration using boldface in the Devanagari text.

1. कृतम् ([kɹ̩.tə̪m]) was split before [t]̪ following the rule
for a cluster of length one.

2. वल्कलािन ([ˈʋəl.kə.lɑː.ni]): here, the first two syllables
have been demarcated from each other by splitting a
consonant cluster of length two.



3. (a) मत्स्यः ([ˈmət.̪sjəh]): this cluster of length three
has been split according to the rule that checks the
presence of either र् or य्.

(b) उक्त्वा ([ˈuk.tʋ̪ɑː]) demonstrates the rule involving
two stops. Here, क् and त्. Hence, we split it after
the first stop from the left hand side.

(c) कृत्̏म् ([ˈkɹ̩ts̪.nəm]) is useful to illustrate the ‘else’
condition when the conditions similar to those in
3(a) and 3(b) do not apply.

4. कात्स्न्यर्म् ([kɑːɹts̪.njəm]) contains a य्-terminal cluster
of length more than three. We split it before the second
consonant when scanning from the right.

3.4. Assigning Stress
Once we finish demarcating the syllables, we use traditional
prosodic and metric rules to determine the syllables that
should receive stress. In Sanskrit, a syllable is either ‘light’
(L) or ‘heavy’ (H) (Sridharan, 2005). A syllable may be con-
sidered to be light in the base case, which acquires the status
of being heavy subject to meeting one or more of the follow-
ing conditions.
1. Syllable contains a long vowel or diphthong

2. Syllable is nasal-terminated or has nasalized vowel

3. Syllable is stressed
The goal is to ensure that any syllable of the form
[C11]V1[C1n...C13]C12[C21...]V2 that results in a cluster of
consonants because of the adjoining consonants of the next
syllable (here, C21 and beyond), is heavy. If the syllable al-
ready satisfies at least one of the first two conditions above,
it is already heavy. However, if not, we must use condi-
tion 3 and add stress to make it into a heavy one. For the
sake of example, consider the syllables of the word कु̖क्षते्र
([ku.ˈɹuk.ʂeː.tɹ̪ə]). When taken independently, they have the
weights L,L,H,L. However, when considered in the word,
the character क््ष, which is a compound consonant of क् +
ष्, causes the previous non-heavy syllable (-[.ɹuk.]-) to end
into a consonant cluster of consonants of adjoining syllables.
It thus receive stress, and hence become heavy, making the
weights of syllables L,H,H,L. The third syllable does not
receive stress, even though the boundary of the syllable break
after it, i.e., -[.tɹ̪ə], contains a consonant cluster, due to hav-
ing the long vowel ◌े ([eː]), which satisfies the first condition.

4. Software
Prototype software developed as part of this
work may be found at the following link:
https://github.com/aalok-sathe/sanskrit_IPA.
The program is written using Python3, primarily because of
effortless inbuilt Unicode support. The program allows the
user to transcribe text on-the-go using a command-prompt
design. A command in the form: transcribe text may be
used. The software can also read an input file externally and
output it in a similarly named file. This may be especially
useful for transcribing large texts. Specific implementations
apart, the software has intuitively named methods and com-
mented code that will allow anyone using it to build soft-
ware on top. We observed a lack of permissively licensed

software for this purpose, and would like to stress that the
prototype program is free and open source software (FOSS)
which may be used, modified, and redistributed by anybody
in compliance with the GNUGeneral Public License (version
3 or later). It is our hope that this licensing will encourage
scrutiny, improvement, and further development in related
research questions.

5. Future Work
We intend to evaluate the current work against hand-
transcribed Sanskrit text. Evaluations will be hosted along
with the source code. More work along similar lines will be
required to create a set of tools to represent traditional knowl-
edge in Sanskrit, as well as a large number of Indic languages.
To begin with, systems need to be developed that will enable
back-transcription from IPA to Devanagari, as well as all-
way systems to transcribe consistently to most of the major
ways of representing Sanskrit text today, such as ITRANS
and IAST. Whereas developing such a system for Sanskrit is
possible using rule-based decision procedures, it is not possi-
ble for most other modern Indic languages which rely largely
on the speaker’s cultural and experiential knowledge of the
language for phonetic disambiguation. For such languages as
Hindi and Marathi, statistical learning methods will need to
be used in addition to rule-based systems to create transcrip-
tion mechanisms that are accurate.

6. Acknowledgments
We are grateful for helpful comments by and discussion
with Mukund Gokhale, Hema Kshirsagar, Dieter Gunkel,
Shardul Chiplunkar, and Thomas Bonfiglio.

7. Bibliographical References
Association, I. P. (1999). Handbook of the International

Phonetic Association: A Guide to the Use of the Interna-
tional Phonetic Alphabet. A Regents publication. Cam-
bridge University Press.

Banthia, J. K. (2001). Census of India, 2001, volume 1.
Controller of Publications.

Dasa, G. (2013). Sanskrit prosody: Syllabification with the
WWG method. sanskritstudio.wordpress.com/
2013/09/13/. Accessed: 2018-01-10.

Emeneau, M. B. (1956). India as a lingustic area. Language,
32(1):3–16.

Jamison, S. W. (2004). Sanskrit. Cambridge Encyclopedia,
pages 673–699.

Sridharan, R. (2005). Sanskrit prosody, Pingala sutras and
binary arithmetic. Contributions to the History of Indian
Mathematics, Hindustan Book Agency, Delhi, pages 33–62.

Steiner, R. (n.d.). Transliteration tool. https://www.
ashtangayoga.info/sanskrit/transliteration/
transliteration-tool/. Accessed: 2018-01-10.

Viswanadha, R. (2002). Transliteration of Tamil and Other
Indic Scripts. Tamil Internet 2002.

Weerasinghe, R., Wasala, A., and Gamage, K. (2005). A
rule based syllabification algorithm for Sinhala. In In-
ternational Conference on Natural Language Processing,
pages 438–449. Springer.

Zieba, M. and Stiehl, U. (2002). The original pronunciation
of Sanskrit. Sanskritweb.net.

https://github.com/aalok-sathe/sanskrit_IPA
sanskritstudio.wordpress.com/2013/09/13/
sanskritstudio.wordpress.com/2013/09/13/
https://www.ashtangayoga.info/sanskrit/transliteration/transliteration-tool/
https://www.ashtangayoga.info/sanskrit/transliteration/transliteration-tool/
https://www.ashtangayoga.info/sanskrit/transliteration/transliteration-tool/

	Introduction
	Sanskrit Phonology
	Rule-Based Transcription
	Shorthand for Nasalization
	Handling the Default Schwa
	Syllabification
	Examples

	Assigning Stress

	Software
	Future Work
	Acknowledgments
	Bibliographical References

