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Abstract
This paper presents a supervised semantic role labeler for Hindi which can be extended to Urdu as well. We propose a set of new features
enriching the existing baseline system for these languages. We break the system into two subsequent tasks - Argument Identification and
Argument Classification respectively. Our experiments show a reasonable improvement with respect to the current baseline for Hindi,
mainly for the classification step. We also report significant improvements for Argument Identification task in Urdu. Finally, we create
a new baseline for the Hindi using 5-fold cross-validation and we capture results excluding the null class and including the null class
exclusively. We also extend the same work on Urdu and report the results.
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1. Introduction

In the last decade, there has been a lot of interest and a
great amount of contribution towards semantic analysis of
languages. There has been a significant amount of work
done for major languages like English which included ef-
forts in making semantically annotated data like PropBank.
But only a little effort has been shown in Indian languages
such as Hindi and Urdu. The Hindi PropBank and the Urdu
PropBank were proposed just a few years back following
which the first system, a semantic role labeler(SRL) for
these languages was built. We saw a need for improvement
in this domain and thus we introduce a new system with
an additional set of features which makes a significant im-
provement in the classification of semantic roles for Hindi
and extend the same work for Urdu. The major objective of
SRL is to provide all sorts of information from a sentence
in the form - who does what, where, to whom, where, when
etc. In the PropBank, each sentence can be thought of as
an event(s) which has participants - analogous to predicate
having arguments. This labeling is done at phrase(chunk)
level. The verb is the predicate and phrases/chunks related
to it are its arguments labeled in categories such as Doer,
Receiver, location, temporal etc. A SRL system has to
therefore, label the arguments for each predicate of a sen-
tence automatically.

Most of the previous works like (Pradhan et al., 2005)),
(Punyakanok et al., 2004), (Koomen et al., 2005) and (An-
war and Sharma, 2016) use a 2 step approach, i.e., first a
chunk is identified whether it is an argument for a given
predicate in the sentence or not. If yes, then it is classified
at second step into the role labels. We use the same ap-
proach for reasons given in Section 3.1.

The applications of SRL can be seen in various research
areas in Natural Language Processing(NLP). It can be at-
tributed to the fact that semantic role labeling provides the
meaning of a sentence at an abstract level. It can be seen in
fields like information extraction (Christensen et al., 2010),
question answering (Pizzato and Molla, 2008) and machine
translation (Liu and Gildea, 2010). Our paper is organized
as follows:

Section 2 gives a brief description about the Hindi and the
Urdu PropBank and how these were annotated above their

respective TreeBanks. We also talk about the language re-
source we used for our task. Section 3 gives an idea about
the related work done for this task. Section 4 shows our
detailed approach and the system architecture. It also talks
about the classifier we have used which helps us cut down
the argument-identification task. In Section 5, We talk
about the current best system as the baseline and then talk
about the new features we have proposed. In section 6, we
show how we conducted our experiments and the results for
both languages. This also includes the comparison of our
system with the existing system.

2. The Hindi Propbank and The Urdu
Propbank

The Hindi Treebank and The Urdu Treebank were added
with a layer of semantic annotation to give rise to The Hindi
Propbank (Vaidya et al., 201 1)) and the Urdu PropBank (An-
war et al., 2016)) respectively. These are part of the Hindi-
Urdu PropBank Project which is a multi-dimensional and
multi-layered resource creation effort for the Hindi and the
Urdu language (Bhatt et al., 2009). Unlike PropBanks in
most of the other languages, these PropBanks are anno-
tated on top of the corresponding TreeBanks which have
a dependency structure. The Treebank already having the
dependency annotation, now including lexical semantic in-
formation at chunk level forms the PropBank corpus. Prop-
Banks of both the languages include dependency relations
at the chunking level which help construct the sentence de-
pendency tree, morphological information for each word,
part-of-speech/syntactic category at chunk as well as token
level. The PropBanks as well, similar to the TreeBanks, are
represented in the Shakti Standard Format (Bharati et al.,
2007). The sentences are distributed in various documents.
Each document has 15-20 sentences where each sentence is
broken down into chunks and each chunk is broken down
at token level.

Propbank labels‘ (or semantic role labels) annotation was
made easy by dependency relations - also called as karaka
relations (Vaidya et al., 2011) (described later) because
there is a close syntactic-semantic relation in them. In the
PropBank, semantic roles are defined for each verb which
means that a fixed set of roles are specified for each verb



and a distinct label is assigned to each role. These are la-
beled in different ways in various PropBank annotations.
For Hindi, the core arguments are the numbered arguments
which are labeled as ARG# where #-{0,1,2,3}. For exam-
ple, the verb bawA(to tell), has four such numbered argu-
ments: ARGO: person telling, ARGI: thing told, ARG2:
hearer there is no ARG3 for this verb. An important point
to be noted here - an argument marked with the same num-
ber, say. ARGO, may not share any semantic similarities
for different verbs. Further, each verb can have a differ-
ent set of these arguments depending on the use of the
verb in a sentence. This is handled by providing differ-
ent frameset/sense to each verb which means that the an-
notation also has the information of which way the verb is
being used in a sentence. Example- the same verb bawA
- has another meaning which is - to mention/describe and
hence has a slight difference in its set of arguments, namely,
ARGQO: the one mentioning or describing A as B, ARGI:
the thing A that is described as B, ARG2-ATR: the de-
scription B that is used to describe A. The Hindi PropBank
has distributed ARG2 into 4 more labels namely - ARG2-
ATR(attribute), ARG2-LOC(location), ARG2-GOL(goal),
ARG2-SOU(source). There are also certain other modifier
labels denoted as ARGM* which are not specific to any
verb and can be shared by any verb. The Hindi PropBank
has 24 distinct labels and the Urdu PropBank has 20 distinct
labels with number of modifiers being 4 less than those in
Hindi.

2.1. Dataset

As reported earlier (Anwar and Sharma, 2016)), for Hindi
PropBank they took around 100,000 tokens as training data
and 20,000 as test data and for Urdu they took 130,000
tokens as training data and 30,000 as test data. We have
used exactly same data for Phase 1(Section 6) of our exper-
iments.

3. Related Work

According to the best of our knowledge, only work done
on automatic semantic role labeling for Indian Languages
PropBank, i.e., Hindi PropBank and Urdu PropBank was
seen last year (Anwar and Sharma, 2016). Other than this,
on English PropBank, plenty of work has been done. One
of the earliest work on SRL on English PropBank(2001)
was done by Gildea and Jurafsky (2002). Xue and Palmer
(2004) showed that full exploitation of the syntactic tree
was needed in the earlier stages to improve the results for
semantic role labeling. Towards the recent years, Roth and
Woodsend(2014) have shown that vector representation of
predicate, arguments and also composition of words leads
to improve semantic role labeling.

Since a single system has been made for semantic role la-
beling for Indian Languages. we take it as the best model
and compare our system with them.

4. Semantic Role labeler

Depending on the type of information one wants to learn
automatically, there are various ways to construct the
semantic role tagging task resting on the annotation of
the PropBank of that language. Following the previous

work (Anwar and Sharma, 2016)) for comparison purposes,
we ignore the frameset/word-sense information for now.
Therefore we will predict the numbered core arguments
ARGI0-3], ARG2 x secondary tags and all ARGM* tags,
for each predicate in a sentence. There are also some
phrases/chunks in a sentence that are not semantic argu-
ments for predicate in concern and we will label such
chunks as NULL. Semantic role labeling can thus be com-
prehended as a 1 of N classification task but so is not the
case. Let us look why in the next section.

4.1. Selecting Approach

As shown in the previous work on Indian Languages (An-
war and Sharma, 2016), direct classification of roles with-
out filtering NULL arguments gave very poor results as
compared to the two step approach. In one of the earli-
est work (Xue and Palmer, 2004), it is observed that for a
given predicate, many chunks in the syntactic/dependency
tree don’t act as its semantic argument. So, the null class
count overwhelms the argument count for the given pred-
icate and classifiers will not be efficient in predicting the
right argument or classifying them. Also, the features re-
quired for checking whether a chunk is an argument or not
can be different from the features used to classify roles. An-
other reason for using this architecture is that it saves a lot
of training time for the classifier in the second step. Hence,
we follow the 2 step approach, i.e., first identifying the null
labels and then classifying the rest. Therefore, we first train
a binary classifier to label each chunk as a semantic argu-
ment or not. For hindi, the reduces the training data by 51%
and for Urdu it is reduced by 81%. Some of the NULL ar-
guments also go to the next step (10% for Hindi and less
than 1% for Urdu). Also, some of the non-NULL argu-
ments are filtered out in the first step. Second, we train a
multi-class classifier to label the chunks in all classes in-
cluding the NULL class.

4.2. System Architecture

We do semantic role labeling at a phrase/chunk level. We
can break our approach in three major steps along with null
data chunk removal as the Oth step.

Step 0: From the dataset we chose, we simply do not take
the sentences which have no semantic annotation, i.e., we
remove the sentences not having the argument labels and
information about the verbs(“pbrole annotation”) and their
frames. If no information is present, we remove the sen-
tence.

Step 1: We run a binary classifier to classify the con-
stituents as Arguments or Non-Arguments(NULL).

Step 2: We run a multi-category classifier to classify the
constituents that are labeled as arguments into one of the
classes plus NULL.

For the 2nd and final step, we used a Support Vector Ma-
chine(SVM) Classifier from the sci-kit library(in Python).
Their SVM is a multi-class classifier which learns unique
boundaries for each class by taking one vs rest approach
for training every class. The classifier‘s soft boundary can
be tuned to maximize results till there is not over-fitting.
We also tried our hands using a simple 2 layered neural
network having the st layer equal to the number of fea-



tures(intuition based) and the last layer equal to the number
of classes. We see the outputs from it were also similar
which tells us that in our case it largely depends on the fea-
tures what we give to a machine irrespective of the clas-
sifiers. Let us take a look at the features used in previous
work and the advancements that could be done.

5. Features

First, we go through the some of the features and techniques
used in previous works. We only take the features from
the previous baseline that we have used in our system also.
We then show the features introduced by us to improve the
performance of the system from the current baseline.

5.1. Baseline Features

We take features from the previous system and consider
them as baseline for us.

Predicate - predicate word is taken as it is.

Head-word - Head of the chunk/phrase according to
syntactic-relations.

Head-word POS - Its Part-Of-Speech category.

Chunk Type - syntactic category (NP, CCP, VGF etc. of
the chunk)

Dependency/karaka relation - syntactic relations between
chunks.

We look at the use of the above features for both Ar-
gument Identification and Argument Classification tasks.
The predicate alone cannot tell us any information about
identification or labeling but when it is used with other
feature such as the head word and head-word’s POS,
then only it makes sense whether this head word‘s chunk
belongs to a label or not. The head word is an important
feature as some of the chunk heads are more likely to be
certain arguments for a predicate. This also accounts for
the use of predicate as a feature. We use the head-word
POS tag along the above because of similar reasons. When
used with the predicate, the phrase/chunk tag is useful
for identification task because for a predicate, a certain
tagged chunk will be more probable to be an argument or a
non-argument. The use of karaka relation, a property from
the syntactic dependency tree was shown to be one of the
best features in this task (Anwar and Sharma, 2016) for
Hindi and Urdu. Also, as an inspiration from “Analysis of
the Hindi Proposition Bank using Dependency Structure”
(Vaidya et al., 2011), we incorporate this feature because
of the mappings in their paper show that there is a good
interrelationship between the syntactic and semantic
predicate-argument relations in a sentence. On account of
similar reasons, we also use these features for the argument
classification task.

5.2. New Features

After analyzing the PropBanks of both the languages, we
came up with certain new features for which we had an
intuition that they will contribute significantly towards this
task. These are discussed below:

5.2.1. Argument Identification

The following features are added for Argument Classifica-
tion task as well.

Predicate(verb)’s root form and suffix features - Us-
ing the predicate word directly as a feature increases the
number of unique instances for the same. To tackle this,
we use break the word into its root/stemmed form plus its
suffix. This highly reduces the number of distinct verbs
for our system as many words fall into the same root
category which in-turn gives a boost to our results. For
example, in English the predicate ‘play‘ can be present in
a sentence as ‘playing* or ‘played* but both fall under the
same predicate. Therefore we take the root ‘play‘ and the
suffix ‘ing or ‘ed‘ separately.

Head-Word embedded as a vector - This is the most
important feature which contributes in lifting up our
results. The reasons to switch over to a new representation
are quite similar to the reason for predicate word. In this
case, the number of distinct words are a lot more( 4300
for Hindi and 4100 for Urdu) because of the richness
of the languages used. In a language, the number of
verbs(in their root form) are indicatively smaller than the
nouns or pronouns. Majority of the chunks we label are
of the syntactic category-NP and hence the heads will be
nouns or pronouns in a good amount which increases the
complexity of this feature. Referring Gensim‘s Word2 Vec,
we experimented using their Continuous Bag Of Words
approach to create a vector representation of head-word
which is of size 30. This highly reduced the size of this
feature and improved quality of our results.

Path - It has been shown in many of the previous
works that path between the chunk and the predicate has
been an important feature in argument identification if
not classification. We call for this feature because in
Hindi, certain path configurations are more likely to be the
arguments to a verb than others. For example, a chunk
with path NPTVGF is more likely to be an argument and a
chunk with path JJPTVGF.

Along with this, we also use dependency path from
the intuition that it may further help in classifying the
chunks into argument labels according to their syntactic
dependence in tree.

Parent and Grandparent‘s syntactic category - Going
through the data and looking at tree structures of the
sentences, it is evident that in a good number of cases,
either the parent or the grandparent is seen as the predicate
for a chunk. Along with the syntactic category we also use
the parent-grandparent dependency relation to support the
classification.

5.2.2. Argument Classification
The following features were only added for this task.

Chunk ‘s Vibhakti/Post-positional - ‘Vibhakti‘ is a Sanskrit
term which is used for post-positions and suffix in Indian
languages. In case of Hindi which uses post-positions



instead of prepositions as in English, the post-position
similarly provides a good discrimination in selecting the
semantic labels.

Other than these we also tried using speech and voice of
the predicate chunk. We have not included it in the final
system because the results declined adding them to the
baseline. Also, there are some chunks in the data which
belong to null syntactic categories (Begum et al., 2008).
These are namely NULL__NP, NULL__VGF, NULL__CCP.
While extracting the features and using them for training,
we also appended their non-null categories for every
feature where chunk‘s syntactic category is needed. For
example, a NULL__NP chunk is also given the category NP
at training time. In the next section, we show the results of
these features and compare our system with the existing
work.

6. Results and Experiments

We performed our experiments in two phases. The first
phase includes experiments on the same train data and test
data for both Hindi and Urdu as used in the earlier work
(Anwar and Sharma, 2016). The second phase was to make
the results more generic over the data and hence we did
a 5-fold Cross validation making the train to test ratio as
80% train to 20% test.

Phase 1-

Argument Identification. The results for Hindi and Urdu
are shown in table 1 and table 2 respectively. For this step,
we trained a binary SVM classifier. We did experiments
tuning the hyper-parameters of the classifier and finally
got the best results by using - Penalty/Regularization
parameter, C = 100.0 and we used a ‘rbf* Kernel with
kernel coefficient, v = 0.0005 for Hindi. For Urdu we used
similar tuning with C = 80.0 and ~ = 0.0006.

System Precision | Recall | F-Score
Previous Baseline 88 87 87
This work 91.41 90.49 90.94

Table 1: Argument-Identification results for Hindi

System Precision | Recall | F-Score
Previous Baseline 78 79 78
This work 92.05 91.49 91.76

Table 2: Argument-Identification results for Urdu

Argument Classification. We begin by building the results
on baseline features in Hindi shown in table 3. In the next
step, we conduct experiments for each of the new feature
we propose. This helps us to see the gain and importance
of individual feature in the system.

To convert our head-word to vector representation, we used
Gensim‘s Word2Vec tool which is a python library hav-
ing the Continuous Bag of Words(CBOW) (Mikolov et al.,
2013) approach. To train that model on our language, for

Feature Precision | Recall | F-Score
Baseline 56.04 49.55 52.59
+Predicate’s Root and Morph 60.29 52.88 56.39
+Head-word Vector 61.97 62.12 62.04
+Path 61.15 58.28 59.68
+Parent POS 59.15 55.56 57.29
+Grand-Parent POS 58.33 55.07 56.65
+Vibhakti POS 60.41 59.93 60.16
+Speech and Voice POS 55.32 49.47 52.23

Table 3: Argument-Classification Feature-Wise results for
Hindi

both Hindi and Urdu we used raw sentences from their cor-
responding Dependency TreeBanks. For both languages,
we used around 200,000 tokens to train the Word2Vec
model and used that model for our feature conversion. Ta-
ble 4 and Table 5 shows the comparison of Argument-
Classification(including NULL class) for Hindi and Urdu
respectively.

System Precision | Recall | F-Score
Previous Baseline 58 42 49
This work 65.01 66.62 65.80

Table 4: Argument-Classification results for Hindi

System Precision | Recall | F-Score
Previous Baseline 87 85 86
This work 86.72 86.37 86.54

Table 5: Argument-Classification results for Urdu

Phase 2- In phase 1, the data was split in train and test as
shown in Section 2 which is- For Hindi, 100,000 tokens
were taken as training data and 20,000 tokens as test data
which is a 83.33% train to 16.67% test data; For Urdu,
130,000 tokens as train and 30,000 tokens as test were
chosen which is 81.25% train to 18.75% test data. In-
stead, we came up with a more generic approach which
was to split the total data(train+test) used in both Hindi
and Urdu to a 80-20 split which can provide for a 5-fold
cross-validation. Hence, we present our results averaged
after cross-validation as our final results for Hindi and
Urdu in table 6 and table 7 respectively. The Argument-
Classification* results are excluding the NULL class‘s
contribution in the result.

Task Precision | Recall | F-Score
Argument-Identification 91.08 89.93 90.50
Argument-Classification 64.26 65.90 65.06

Argument-Classification*® 69.12 73.16 71.12

Table 6: 5-fold Cross-Validation for Hindi

The previous work did not report the results excluding
NULL class making it difficult for comparison purposes
since the results would vary dependent on how much NULL



Task Precision | Recall | F-Score
Argument-Identification 93.79 93.43 93.60
Argument-Classification 84.71 84.89 84.80

Argument-Classification* 85.37 86.27 85.81

Table 7: 5-fold Cross-Validation for Urdu

arguments are present at the classification step. In other
way it is dependent on the performance of the Identifica-
tion task. All experiments for classification step were car-
ried out using SVM classifier with hyper-parameters tuned
as - C = 70.0 and we used a ‘rbf* Kernel with kernel co-
efficient, v = 0.0005 for Hindi. For Urdu we used similar
tuning with C = 300.0 and ~ = 0.0006.

7. Future Work

This paper does not focus on handling cases where multiple
arguments of the same predicate are assigned the same role
which is theoretically not possible. To avoid this, we need
to use some re-ranking method to assign the best possible
set of arguments for a given predicate such that the likeli-
hood of our output is maximized. This can be handled using
Integer Linear Programming (Punyakanok et al., 2004)
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