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Abstract

Sentiment analysis is a highly subjective and challenging task. Its complexity further increases when applied to the Arabic language,
mainly because of the large variety of dialects that are unstandardized and widely used in the Web, especially in social media. While
many datasets have been released to train sentiment classifiers in Arabic, most of these datasets contain shallow annotation, only marking
the sentiment of the text unit, as a word, a sentence or a document. In this paper, we present the Arabic Sentiment Twitter Dataset for
the Levantine dialect (ArSenTD-LEV). Based on findings from analyzing tweets from the Levant region, we created a dataset of 4,000
tweets with the following annotations: the overall sentiment of the tweet, the target to which the sentiment was expressed, how the
sentiment was expressed, and the topic of the tweet. Results confirm the importance of these annotations at improving the performance
of a baseline sentiment classifier. They also confirm the gap of training in a certain domain, and testing in another domain.
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1. Introduction

Sentiment analysis refers to the task of inferring opinions
from text (Liu, 2012). Research in sentiment analysis has
been driven by the interest in its wide range of applica-
tions and the availability of large amounts of subjective
data on the Web (Ravi and Ravi, 2015). Today’s social me-
dia has provided people the opportunity to connect across
the globe and express their opinions and emotions freely
and abundantly. Twitter is one of the most used social me-
dia platforms, with recent statistics ' indicating that over
500 million tweets are being sent out daily, mainly to ex-
press opinions about personal or trending topics, news or
events (Sareah, 2015).

Sentiment analysis has been widely approached as a text
classification problem, with the target of predicting the
overall opinion of a given text (words, sentences or doc-
uments) (Pang et al., 2002; Socher et al., 2013; Tang et
al., 2015; Farra et al., 2010). However, sentiment analy-
sis can also be performed at more granular levels, such as
identifying target entities (Brody and Elhadad, 2010; So-
masundaran and Wiebe, 2009; Farra and McKeown, 2017)
and predicting opinions towards these targets, whether in
Twitter (Jiang et al., 2011), online comments (Biyani et al.,
2015) or product reviews (Wang et al., 2016; Kirange and
Deshmukh, 2015). These tasks are critically-important to
handle cases where the text contains multiple opinions ex-
pressed towards one or different targets, which is a common
phenomenon in product reviews.

Research in exploring methods for English sentiment anal-
ysis has been leading the way, while other languages, in-
cluding Arabic, still lag behind. Most advances were made
in English, mainly because to the availability of sentiment
corpora to support such tasks. This paper aims at providing
new resources to support research advances in Arabic. As a
matter of fact, Arabic ranks as the 4™ most spoken language

"https://www.socialbakers.com/statistics/
twitter/

worldwide (Paolillo and Das, 2006), and as of March 2017,
11.1 million Twitter users from the Arab world are gener-
ating 27.4 million tweets on a daily basis (Salem, 2017).

In the last few years, there has been a significant progress
in creating resources for Arabic sentiment analysis. How-
ever, these resources are often coupled with sentiment an-
notations only, and typically on a three point scale (1 to 3)
instead of the common 5-point typically used in reviews,
which also reflects sentiment intensity. Furthermore, it was
found that modeling sentiment depends on the domain or
topic at hand, and that a sentiment model trained on one
domain is not expected to perform as well on another (Pan
et al., 2010). Additionally, textual semantics vary across
languages and dialects (Baly et al., 2017a) due to cultural
factors (Salameh et al., 2015; Mohammad et al., 2016). For

example, f\.\'a_-” OLJ\ OV 9\ Glory to God the Great is

used in the Levant to express positive sentiment, whereas it
is considered a religious saying with no sentiment in other
Arab regions, e.g. the Gulf countries. Consequently, cross-
lingual and cross-domain approaches (Chen et al., 2016; Li,
2017) have been explored to avoid the need for a sentiment
corpus for each domain or language, which is costly and
time-consuming.

In this paper, we address the limitations of having a corpus
annotated for sentiment only, by creating a corpus and hav-
ing it simultaneously annotated for different and important
aspects needed for research in sentiment analysis. We cre-
ate our corpus from Twitter content due to its widespread
use in the Arab world. Given the cultural and linguistic
differences across Arab regions, causing shifts in seman-
tics, we focus on developing sentiment models for the Lev-
antine dialect. According to (Zaidan and Callison-Burch,
2014), Arabic dialects can be categorized into Egyptian,
Levantine, Gulf, Iraqi and Maghrebi. Our corpus is com-
posed of tweets retrieved from Levantine countries (Jordan,
Lebanon, Palestine and Syria), where the Levantine dialect
is the 3" most spoken Arabic dialect (Zaidan and Callison-



Burch, 2014). We selected a group of 4,000 tweets, and had
users annotate those tweets via crowdsourcing to: 1) iden-
tify the sentiment targets in each tweet, 2) annotate both
sentiment polarity and intensity on a five-point scale, from
very negative to very positive, 3) indicate whether senti-
ment was expressed implicitly or explicitly, and 4) finally
to identify the topic the tweet is discussing. This corpus is
publicly available. 2

The resulting corpus provides a resource complement to ex-
isting Arabic dialect resources (Baly et al., 2017c; Assiri
et al., 2016; Refaee and Rieser, 2014a). It will also en-
able models that can exploit sentiment target identification,
topic identification and sentiment expression. Furthermore,
it will opens doors to investigate cross-dialect sentiment
models by leveraging existing Twitter corpora from other
regions and dialects. Several experiments are conducted to
confirm the benefits of such new aspects (Joty et al., 2017).
We show that topic-based models outperform models that
do not consider the topic of the text.

The remaining of the paper is organized as follows. Sec-
tion 2 describes previous efforts to create sentiment datasets
in Arabic. Section 3 presents an analysis of Arabic tweets
and describes our methodology to create and annotate the
corpus. Section 4 presents experimental results to bench-
mark the performance of a baseline classifier on our de-
veloped corpus, and also to emphasize the impact of topic
change on the performance. Concluding remarks are made
in Section 5.

2. Related Work

Sentiment analysis has been performed by training machine
learning models using different choices of features (Abdul-
Mageed et al., 2011; Abdul-Mageed et al., 2014; Badaro et
al., 2014; Refaee and Rieser, 2014b; Badaro et al., 2015;
Al Sallab et al., 2015; Baly et al., 2016; Baly et al., 2017b;
Al-Sallab et al., 2017). However, training and evaluating
accurate sentiment models requires the availability of cor-
pora with sentiment labeling. Below, we list commonly-
known Arabic sentiment corpora.

Abdul-Mageed et al. (2011) created a corpus by annotating
2,855 sentences, coming from the first 400 documents of
the Penn Arabic Treebank Version 1 Part 3 (Maamouri et
al., 2004), using the following labels: objective, subjective-
positive, subjective-negative and subjective-neutral. This
dataset was extended by annotating additional 5,342 sen-
tences from Wikipedia talk pages and 2,532 sentences from
web forums to create the AWATIF corpus (Abdul-Mageed
and Diab, 2012). Rushdi-Saleh et al. (2011) created the
Opinion Corpus for Arabic (OCA), which consists of 500
Arabic movie reviews that are annotated as either positive
or negative. Aly and Atiya (2013) created LABR; a large-
scale corpus consisting of 63,257 book reviews written in
Arabic, each rated on a five-point scale. ElSahar and El-
Beltagy (2015) retrieved 33,116 Arabic reviews on movies,
hotels, restaurants and products, and automatically anno-
tated them using available ratings.

The above-mentioned corpora contained data written in
Modern Standard Arabic (MSA). Additional efforts have

’The corpus is available at www . oma-project.com

been made to develop corpora for dialectal Arabic, due to
its widespread use in the Web. Refaee and Rieser (2014a)
retrieved 8,868 tweets from multiple Arabic dialects, and
annotated them for both subjectivity and sentiment using
the following labels: polar, positive, negative, neutral and
mixed. Baly et al. (2017d) created the Arabic Senti-
ment TreeBank (ArSenTB) using 1,176 comments, from
the QALB dataset (Mohit et al., 2014), written in MSA
and a mixture of different dialects. In addition to sentence-
level sentiment annotation, comments were transformed
into phrase structure parse trees, and the sentiment of each
constituent (node in the tree) was also annotated, totaling
up to 123,000 constituents. Al-Kabi et al. (2016) created
a corpus covering MSA as well as several Arabic dialects.
This corpus is composed of 1,442 reviews extracted from
five domains: economy, food-life style, religion, sports and
technology. Annotation was performed manually to ensure
high quality. Nabil et al. (2015) created the Arabic Sen-
timent Tweets Dataset (ASTD), which consists of 10,006
tweets, written in the Egyptian dialect and annotated as
positive (799), negative (1,684), mixed (832) or objective
(6,691). Medhaffar et al. (2017) created the Tunisian Sen-
timent Analysis Corpus (TSAC) by retrieving 17,000 com-
ments written with Tunisian dialect from Facebook, and an-
notating them as positive or negative. Baly et al. (2017a)
created two datasets, each consisting of 1,000 tweets, writ-
ten in Egyptian and Emarati dialects and manually anno-
tated for sentiment at a 5-point scale, from very negative to
very positive. A similar effort was done to create AraSenti-
Tweet; a sentiment corpus of 17,573 tweets written in MSA
and in Saudi dialect (Al-Twairesh et al., 2017).

It can be observed that, despite the recent efforts to cre-
ate Arabic sentiment corpora, the majority of these datasets
only focused on labeling the overall sentiment of the text,
while ignoring other useful information, such as the target
of the sentiment and the topic being discussed. A corpus
with similar annotations was developed for SemEval-2016
Task 4 on Sentiment Analysis in Arabic tweets (Rosenthal
et al., 2017). The corpus consisted of 3,355 tweets anno-
tated by the polarity of sentiment in the tweet and the sen-
timent towards a specific target in the tweet (also known
as stance). Also, (Al-Smadi et al., 2015) used a subset of
2,800 reviews from the LABR corpus and enriched it with
aspect-based sentiment annotations.

In this paper, we present ARSENTD-LEV; an Arabic sen-
timent dataset that is composed of Levantine tweets, and
we enrich it with a variety of sentiment-related annotations
that never existed together in a single corpus.

3. Dataset

In this section, we describe our methodology to create the
new sentiment corpus.

3.1. Manual Data Analysis

To have the proper guidelines in the annotation process, we
conducted manual analysis to make sure we have solid in-
sights into the intricacies of the sentiment analysis and the
required sentiment annotations. The goal of the analysis
was to gain insights and understand the characteristics and
different usages of Twitter in the Levant region. As such, a



sample of 200 tweets, generated in countries from the Lev-
ant region, were retrieved and characterized. We focused
on information that should be critical to developing accu-
rate sentiment analysis models, including: the topic being
discussed, the language being used, the way sentiment was
being expressed and the target of the sentiment.

Topic Analysis The first question we wanted to answer
is: what topics are often discussed on Twitter?. Our find-
ings, shown in Table 1, suggest that most of the tweets ex-
pressed opinions about personal and daily matters, and to a
less extent on political issues, especially the ongoing con-
flicts in the Middle East. People also discussed religious
matters and tend to quote verses from the Quran. Table 1
also illustrates the different items discussed per topic, or-
dered from most to least frequent in the sample set. In ad-
dition to the outcome of knowing which topics were being
discussed, we also used the sample tweets to identify the
most discriminative keywords across topics, which are used
later when creating the corpus.

Topic Size  Sub-topics

sarcasm, love, sadness and op-

Personal 36% ..
timism

Syrian war, Palestinian war,
Lebanese elections, revolution
and terrorism

Politics 23%

sermon, mention, praising God,
religious events and Quranic
verses

Religion 11%

international and local soccer

Sports 6% games, soccer players and bas-
ketball
entertainment, ads, health, ed-
Other 24%  ucation, economy, technology

and weather

Table 1: Breakdown of the different topics and sub-topics
that were discussed in the sample set of 200 tweets.

Language Use By analyzing the language that was used
to write the 200 tweets, we observed that: 51% were written
in Modern Standard Arabic (MSA), 34% in Levantine di-
alect, and the remaining 15% in English, Arabizi, or a mix-
ture of MSA and dialectal Arabic (DA). We also observed
that most personal tweets were written in DA, indicating
that users prefer to use it rather than MSA when it comes to
discussing personal aspects of their lives and feelings.

Sentiment Expression We analyzed the sentiment distri-
bution in the 200 tweets by labeling the sentiment polarity
and the way it was expressed, i.e., explicitly or implicitly,
for each tweet. We observed that a significant amount of
tweets were negative, which can be attributed to the current
political situation having a direct impact on people’s lives
and opinions. We also observed that sentiment distribution
changes from one country to another; it is mostly negative
in Syria and mostly neutral in Jordan, which may reflects
the countries’ political and social stabilities. Finally, among

the subjective tweets, sentiment was expressed explicitly in
64% and implicitly in 35% of the tweets, which is an indi-
cation of the complexity in opinion mining.

3.2. Corpus Development

Our goal is to create an Arabic dataset of tweets from the
Levant region, and annotate them for topic, sentiment po-
larity, sentiment intensity, sentiment target and sentiment
expression. In order to create this corpus we performed the
following steps.

Tweets Retrieval We used the TWEEPY python mod-
ule to retrieve tweets using pre-specified geo-locations
covering four countries from the Levant region: Jordan,
Lebanon, Palestine and Syria. The retrieval process began
on November 5% 2017 and ended on November 29" 2017.
As aresult, we retrieved 45,000 tweets that are equally dis-
tributed across the four countries.

Pre-processing The target size of our corpus is 4,000
tweets; 1,000 for each country. We also aim to collect
tweets discussing the common topics (politics, religion,
sports, personal and entertainment) that we encountered in
the manual analysis. Therefore, we created for each of the
five topics a list of topic-specific keywords; for each topic
we selected the most frequent words in the sample set that
were the most discriminative with regard to that topic. We
checked the 45K tweets against these lists and kept those
that contained at least one keyword from one list and none
from the others. This is a naive topic classification that will
not be part of the final corpus, and that was performed only
to increase the likelihood of having tweets discussing our
target topics. We also excluded tweets written in foreign
languages and those only containing URLs and emoticons.
Finally, for each country, we selected the longest 1,000
tweets such that they are balanced across our target topics.
It is worth mentioning that despite the fact that we enforced
some balance over the different topics, we do not expect
this to be the case in the final corpus after manual anno-
tation, since topics are inherently imbalanced as shown in
Table 1.

Annotation The annotation process was carried out via
crowdsourcing and using the CrowdFlower platform. For
each tweet, annotators were instructed to 1) select its over-
all sentiment, 2) identify the target of this sentiment in the
tweet (in case it was not neutral) by copying segments of the
tweet into a text box, 3) identify whether the sentiment was
expressed explicitly or implicitly, and 4) specify the topic
being discussed. Sentiment labels were assigned based on a
5-point scale using the following labels: very negative, neg-
ative, neutral, positive and very positive. Motivated by our
manual analysis of a sample of tweets, we pre-defined the
following topics: politics, religions, sports and personal. If
a tweet’s topic did not belong to one of these choices, an-
notators will have to specify another topic based on their
own judgment. Before conducting the large-scale annota-
tion task, we conducted a pilot task to ensure the clarity of
the guidelines and examples, and consequently the task.

Tweets were randomly assigned to at least 5 annotators, and
up to 4 additional annotators were asked to participate in
case of ties. As a result, we had 5-9 different annotators an-



Topic | Sentiment | Expression
Personal \ 32.6% | Very negative 1 16.3% | Explicit | 73.6%
Sports 1 12.12% | Negative 1 30.8% | Implicit 1 4.3%
Politics | 37.63% | Neutral | 22.13% | None | 22.1%
Religions 1 9.83% | Positive 1 20.1% \
Entertainment | 4.35% | Very positive | 10.7% |

Other 1 3.45% \ \

Table 2: Distributions of the different annotated features in the corpus.

notating each tweet, which is a reasonable number to per-
form aggregation over 5 classes. Annotations were aggre-
gated based on majority voting, and the annotators’ trust
score (reflecting their work accuracy) was used for break-
ing ties. To make sure only qualified annotators are allowed
to do the task, we performed quality control by creating a
gold set of 181 tweets that we annotated for sentiment, and
used it to monitor the annotators’ accuracy on this set. Only
those with an accuracy higher than 75% were allowed to
stay on the job.

Post-Processing To aggregate sentiment targets returned
by annotators, we automatically extracted the longest com-
mon substring among targets whose annotators agreed with
the final aggregated label. In other words, if the aggregated
sentiment was positive, we only considered the pool of tar-
gets returned by annotators who annotated the tweet as ei-
ther positive or very positive. Also, while we instructed
annotators that the sentiment target must be explicitly ob-
served in the tweet, we observed that in 160 tweets, an-
notators specified the targets with their own wording. We
resolved these cases manually. We also manually aggre-
gated the topic annotations of 138 tweets whose topic was
not one of the pre-specified topics.

3.3. Statistics and Evaluation

It is of critical importance to evaluate the annotation qual-
ity to make sure the corpus can be properly used to develop
accurate sentiment models. We evaluated how well anno-
tators of the each tweet agreed on the same label. Over a
sample of 100 tweets, the average agreement was 83% for
topics, 73% for sentiments, and 72% for sentiment expres-
sions. These numbers are significantly higher than 50%
(the case of a tie), indicating a straightforward majority-
based aggregation for most of the tweets. Differences in
agreements reflect the relative difficulty of the task. For
instance, it can be inferred that identifying the sentiment
of a tweet and how it was expressed is a more ambiguous
and subjective task than identifying the topic. It is worth
mentioning that the agreement on sentiment increases up
to 81% when considering three sentiment classes, which
indicates that many cases of disagreement were due to dif-
ferences in annotating the intensity.

We also report a 83% agreement between the labels of
the gold set (181) tweets, and the aggregation of the
CrowdFlower-annotated sentiments for the same tweets. In
order to evaluate the quality of sentiment targets, we man-
ually annotated the targets for the gold set of tweets, and
compared them to the outcome of selecting the longest
common substring among CrowdFlower-annotated targets

for the same tweets. By counting the number of common
words between both targets and normalizing it by the length
of the gold target, we found a 63% overlap, on average,
which is acceptable given the highly-subjective nature of
the task. Finally, statistics and distributions of the differ-
ent annotated features from the corpus are presented in Ta-
ble 2.

4. Experiments and Results

In this section, we present the results of applying a baseline
sentiment classifier on our new corpus: ArSenTD-LEV. We
also perform cross-topic and in-topic experiments to em-
phasize the impact of changing the topic between training
and testing data, and also by using the fopic and sentiment
expression as additional features to train the classifier.

Our feature set is composed of uni-grams and bi-grams rep-
resented with TF-iDF scores. These features were used to
train different classifiers including logistic regression, Sup-
port Vector Machines (SVM), random forest trees and the
ridge classifier. We report only the results of logistic regres-
sion, which achieved better results. Results are reported
using accuracy and F1 score averaged across the different
classes (Macro-F1).

First, we train a generic model on the whole corpus with
5-fold cross-validation. In this case, the model is trained
on different topics and dialects. We show in Table 3 that,
by only adding the country, topic and sentiment expression
features directly from the corpus, the performance signifi-
cantly increases by 13 absolute points. This indicates the
importance of these features for sentiment analysis, and re-
lates back to our manual analysis in which we found senti-
ment variations across topics and dialects.

We also highlight the impact of change-of-topic between
training and testing by conducting two experiments. In the
first experiment, we train our model and test it on data from
the same topic, i.e., the fopic feature is implicitly embed-
ded in the model. In the second experiment, we train our
model on data from one topic and test on data from another
topic. We also evaluate, for each experiment, the impact of
adding the sentiment expression feature. We perform these
experiments on the politics and personal domains, which
are the most frequent topics in our corpus. We create fixed
sets for training and testing with equal sizes in both topics,
and use the same splits for all experiments.

Results in Table 3 show a significant drop in accuracy due
to the change-of-topic from training to testing. This is a
typical problem seen when developing cross-domain sen-
timent models instead of training topic-specific models,



Generic

Same-Topic

Cross-Topic

Features cross-val || Politics  Personal | Pol-Pers Pers-Pol

uni/bi-erams Acc. 0.51 058 ' 040 031 ' 036
& Macro-F1 | 0.50 053 | 039 021 | 029

uni/bi-erams + annotations < 0.63 0.64 | 0.6 047 | 0.0
& Macro-F1 | 0.63 062 1 054 037 1 044

Table 3: Experimental results of a baseline logistic regression model showing the impact of adding the corpus annotation

features, and the impact of changing the topic from training to testing.

which is an expensive solution. Our corpus allows the de-
velopment of models for domain adaptation given the avail-
ability of topic annotation. Results also confirm the im-
portance of the sentiment expression feature, which alone
helped improving the performance by more than 10% abso-
lute. It can be observed that results on the personal domain
are much lower than those in the politics domain, which
can be attributed to the wider range of sub-topics that can
be covered by the personal domain.

5. Conclusion

In this paper, we presented the ArSenTD-LEV; a corpus
for sentiment analysis in Arabic Levantine tweets. Based
on a manual analysis that we conducted on a sample of
200 tweets retrieved from the Levant region, we realized
the importance of knowing: 1) the topic being discussed
by the tweet, 2) the target to which the sentiment was ex-
pressed, and 3) the manner the sentiment was expressed, to
predict the sentiment of the tweet more accurately. Conse-
quently, our developed corpus consists of 4,000 tweets col-
lected from Levantine countries (Jordan, Lebanon, Pales-
tine and Syria). For each tweet, the corpus specifies its
overall sentiment, the target to which that sentiment was
expressed, and how it was expressed (explicitly or implic-
itly) and the topic being discussed. Annotation was per-
formed via crowdsourcing, and annotation guidelines were
carefully set to ensure high quality output, which was re-
flected in the high agreement levels for the different anno-
tated features.

Experimental results confirm the importance of these fea-
tures. For instance, including information about the topic
and sentiment expression improves the performance of a
baseline classifier by more than 10% absolute. Further-
more, results confirm the gap that exist between training
and testing models on tweets from the same or from differ-
ent topics. We also report a significant improvement of 13-
14% when adding the sentiment expression feature, which
suggests some dependency between sentiment polarity and
how sentiment is expressed. It is worth mentioning that
for these experiments, we used the manually-annotated fea-
tures directly from the corpus, which is not a realistic sce-
nario, just to highlight the potential benefits of using these
features for sentiment analysis.

Future work include developing accurate machine learn-
ing models that leverage the existing annotation to per-
form both overall and target-based sentiment in Arabic
tweets. It is also interesting, given tweets that are segre-
gated by dialect and topic, to investigate cross-topic and

cross-dialect solutions that will mitigate the amount of re-
quired resources that will be needed to perform sentiment
analysis on any given piece of text.
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