
iArabicWeb16: Making a Large Web Collection More Accessible for Research

Khaled Yasser, Reem Suwaileh, Abdelrahman Shouman, Yassmine Barkallah,
Mucahid Kutlu, Tamer Elsayed

Computer Science and Engineering Department, Qatar University, Doha, Qatar
{khaled.yasser, reem.suwaileh, a.shouman, yassmine.barkallah, mucahidkutlu, telsayed}@qu.edu.qa

Abstract
ArabicWeb16 is the largest publicly-available Arabic Web crawl, containing 150M Web pages. We envision many uses of this dataset to
advance the research in various fields such as information retrieval (IR), natural language processing, and machine learning. However,
accessing such a large dataset needs high storage and processing resources, which may not be available for many research teams. In
this paper, we present iArabicWeb16, a freely-available Web-based tool making ArabicWeb16 dataset more accessible to the research
community via both Web interface and programming API. iArabicWeb16 allows users (typically researchers) to search ArabicWeb16
efficiently while providing them with various ranking methods, besides the ability to download resulting Web pages directly. We evaluate
its efficiency and scalability with respect to the number of users it can serve, and show that it is a valuable tool that helps researchers
explore and search ArabicWeb16 dataset for the sake of their research work without the storage and computational burden.

1. Introduction
Arabic is one of the most commonly spoken languages in
the world with more than 400M speakers, many of whom
search the Web daily, making research on Arabic Informa-
tion Retrieval (IR) an important area. However, research on
Arabic IR has been obstructed by the lack of available re-
sources, e.g., datasets, tools, and test collections, that ease
the development of retrieval systems.
There are a number of studies developing Arabic datasets
and test collections for different IR tasks and domains. Two
examples are the test collection of MSA news articles from
Agence France Press (AFP) introduced by the TREC Cross-
Lingual Track (Gey and Oard, 2001), and EveTAR test col-
lection that consists of 390M Arabic tweets of which 62K
are annotated for multiple IR tasks such as event detection
and real-time summarization (Hasanain et al., 2017). While
these datasets and test collections are useful, researchers
may encounter several challenges in developing their pro-
totypes due to limited tools and libraries for Arabic IR sys-
tems. A few Arabic search engines are built for either com-
mercial purposes or experimental research (Al-Maimani et
al., 2011) such as Idrisi1, Sawafi2, and Barq (Rachidi et al.,
2003); however they are either too old to the nature and
scale of the current Web, or even no longer available.
Recently, Suwaileh et al. (Suwaileh et al., 2016) introduced
ArabicWeb16, the largest available Arabic Web crawl of
150M Web pages. The collection has the potential to be
a valuable resource that can advance the Arabic IR (and re-
lated areas such as natural language processing) research in
several directions. Many researchers, however, may find it
challenging to access, process, and search a collection of
that scale. Dataset-specific search and lookup tools were
previously introduced to help explore and analyze large
crawls such as ClueWeb09 and Clueweb123. Furthermore,
the Microblog track in TREC 2013 (Lin and Efron, 2013)
and 2014 (Lin et al., 2014) provided a common API by

1www.aramedia.com/idrisi.htm
2www.multilingual-search.com/

sawafi-a-new-arabic-search-engine/
3lemurproject.org

which users can search the large tweet collections. Never-
theless, all of those tools focus only on English data.
In this paper, we present iArabicWeb16, a research tool
that provides search and lookup services designed specifi-
cally for ArabicWeb16. Processing a dataset in the scale of
150M Web pages brings many computational challenges,
requiring high storage resources and computation power.
Therefore, to make it more accessible to a wide-range
of researchers, we built a search interface front-end that
is supported by a customizable Lucene-based back-end.
The back-end runs in a multi-threaded fashion to speed
up the search process, while the front-end allows users
to try various ranking functions (e.g., language-modeling
and BM25 (Robertson et al., 1995)) and set search fields
(e.g., title vs. content) among other features. This flexi-
bility allows users to set the best configurations for their
search needs more effectively. Moreover, users can retrieve
the content of the documents directly using their document
IDs, which further helps users needing only a subset of
the crawl. Finally, iArabicWeb16 provides access to Ara-
bicWeb16 via both Web interface and programming API.
We evaluated the efficiency of iArabicWeb16 in various sit-
uations. Our experiments show that it returns search results
for a single user in less than 200ms on average by employ-
ing 64 threads, and can also serve 128 users (the largest set
we tested) concurrently without a huge delay (with average
response time of 6.5 seconds).

2. ArabicWeb16 Collection
ArabicWeb16 is a one-month snapshot (1st-30th January
2016) of the Arabic Web that contains around 150M Web
pages (Suwaileh et al., 2016). At the time of this writing,
ArabicWeb16 is the largest Arabic Web dataset which is
publicly available for the research community. The dataset
contains diverse types of Web pages such as informational
pages (e.g., Wikipedia), forums, news articles, organiza-
tional pages, and transactional pages. It also covers high
linguistic diversity of Arabic by containing around 30M
web pages with different Arabic dialects. We believe the
dataset can be a useful resource for many research areas
such as machine learning, natural language processing, and

 www.aramedia.com/idrisi.htm
www.multilingual-search.com/sawafi-a-new-arabic-search-engine/
www.multilingual-search.com/sawafi-a-new-arabic-search-engine/
lemurproject.org


IR. For IR, it can be used for research on search tasks (e.g.,
ad-hoc Web and blog search, cross-dialect search), filter-
ing (e.g., news), question-answering (e.g., over blogs and
forums), and spam detection among others.

3. iArabicWeb16 Architecture

Figure 1: iArabicWeb16 Architecture.

In this section, we present the architecture of iArabicWeb16
in detail. It has three main components (see Figure 1):

• Web Server: Provides a Web interface for users to
perform search tasks and use other functionalities of
the system, e.g., requesting API keys.

• Search Server: Performs search tasks over the collec-
tion and retrieves documents. It consists of three com-
ponents (REST server, Lucene Searcher, and Lucene
Index) to handle the search tasks.

• Database: Stores the raw documents (in HTML for-
mat) to be displayed when documents are retrieved.

A typical search scenario on iArabicWeb16 is as follows.
Only a user with a valid API key can access the search
server and perform search operation through the API or the
Web interface. A search query submitted by a Web client
(i.e., a user using the Web interface) or an API client (i.e., a
user using the API) is first processed by the REST Server to
make it ready for search operations. Next, Lucene Searcher
performs the search task over the index using the search
parameters that the user provides. Subsequently, the REST
Server performs a post-processing (i.e., filtering) to have a
better representation of the results. Finally, the results are
retrieved from the database and returned to the user.
We next discuss the back-end (Section 3.1.) and the front-
end (Section 3.2.) in more details.

3.1. Back-End
In this section, we explain some implementation details of
the back-end and how search requests are handled.

3.1.1. Storing HTML Pages
Fast retrieval of documents is significant for the overall per-
formance of the system. Therefore, we store the raw HTML
content of the Web pages in a database to be able to present
the results in the Web interface. We used MongoDB 3.2 4

in which the field size limit is large enough to contain large
Web pages.

4 www.mongodb.com/

3.1.2. Indexing
To prepare for search, we indexed ArabicWeb16 collection
using Lucene 6.2.5. Indexing the entire collection would
take a very long time on a single thread; therefore, we par-
titioned the dataset into 31 partitions (equal to the number
of folders of the raw collection) and indexed each sepa-
rately in parallel. We then merged them to form the final
index. Furthermore, the index contains both stemmed and
non-stemmed versions of each document, allowing users to
enable/disable stemming for each search query. We used
the default Arabic stemmer of Lucene for stemming.
The total size of the index is about 1.6TB, bringing addi-
tional challenges to efficient search. To improve the effi-
ciency of the search tasks, we split the index into 62 seg-
ments allowing multiple search threads to run more effi-
ciently.

3.1.3. Searching
iArabicWeb16 is designed to help researchers work on Ara-
bic IR. Therefore, instead of implementing a static search
engine with fixed configurations, we developed a config-
urable search engine in which several settings can be cho-
sen by the researchers. In fact, they can explore differ-
ent ranking algorithms, search fields, and indexes. The
Lucene Searcher provides 5 different ranking functions:
TF-IDF, BM25 (Robertson et al., 1995), Query-Likelihood
with Dirichlet smoothing (Ponte and Croft, 1998), Query-
Likelihood with Jelinek-Merce smoothing (Zhai and Laf-
ferty, 2004), and combination of all using CombSUM
method (Shaw et al., 1994). It also performs search on title
only, content only, or both title and content, with stemming
on or off. Finally, the number of returned results can also
be specified.

3.1.4. Processing Search Requests

Figure 2: The process of handling search requests. Dashed
lines indicate asynchronous calls.

Figure 2 illustrates the process of handling search requests.
Search requests from both API and Web clients are sent
as HTTP requests to the search server, which uses Play
Framework 2.66 to implement its Web services. Once an
HTTP request is received, its API key needs to be authenti-
cated. A unique ID is then generated and the request itself is
logged and sent to the Search Controller (SC). SC performs
the required pre-processing on the query (e.g., stemming if
set) and issues the search query against the multi-threaded
Lucene Searcher (LS). Each thread of the LS runs on a sin-
gle index segment at a time. Once the search operations are

5lucene.apache.org/
6playframework.com/

www.mongodb.com/
lucene.apache.org/
playframework.com/


12345

6789

Figure 3: Search interface: an example of searching ArabicWeb16. The translation of the search options are: (1) Search bar
(query: tourism trips in Azerbaijan), (2) The number of results, (3) Save selected results, (4) Save all results, (5) Show/hide
advanced search options, (6) Ranking function, (7) Search field, (8) Show snippets, and (9) Stemming.

done for all segments, the search results are returned to SC,
which passes the results to the Results Filter (RF). RF re-
moves the duplicates based on their content and groups the
results from the same source to have a better presentation of
the search results. After filtering, the results are sent back
to the client in an HTTP response.
Our system handles multiple search queries concurrently.
In order to avoid a request being delayed because another
one is being processed, all internal calls are performed
asynchronously such that components do not wait for one
another to handle the next request. The asynchronous calls
are shown in dashed lines in Figure 2.
As users can also request specific documents by IDs, pro-
cessing document retrieval requests is done in a similar
way, but with two differences. First, the database is queried
instead of the Lucene Searcher. Second, RF compresses the
documents if multiple are requested.

3.2. Front-End
iArabicWeb16 allows users to search through the Web in-
terface or the programming API. In this section, we de-
scribe each of the two ways and provide examples on how
to use them.

3.2.1. Search Interface
iArabicWeb16 provides a Web search interface7 that allows
the registered users to perform interactive search similar to
commercial search engines. Figure 3 shows a simple search

7bigir1.qu.edu.qa:3000

task using the search interface (search options are translated
below the figure for convenience). The interface reflects
the options provided by the back-end searcher (discussed
in Section 3.1.3.) via specifying the number of returned
results, the ranking function, the search fields, and en-
abling/disabling word stemming. The user can also choose
to display snippets of results. Once results are returned,
users can click on each result to see either the crawled ver-
sion of the page or the live (current) one.
The default search options are set as follows. The number
of results is set to 10; the ranking method is set to Query-
Likelihood (Dirichlet); search field is set to content-only;
and both stemming and snippets are enabled.

3.2.2. Programming API
iArabicWeb16 also provides a Java client API which en-
ables developers or researchers to perform search opera-
tions with different configurations and retrieve documents
directly using their IDs within their programs. Figure 4
shows the signatures of the most important functions pro-
vided by the API.

• search: enables the users to issue a specific query
on the collection with the specified configuration (e.g.,
ranking function, number of returned results, etc.). It
returns a string in JSON format that can be parsed to
an array of results using parseResults function
(not shown in the figure).

• retrieveSingleDoc: returns the document with
the given ID.

bigir1.qu.edu.qa:3000


• retrieveBatchOfDocs: writes the content of the
requested documents in the destination file specified
by the user in a compressed format.

String search(query, configuration)
String retrieveSingleDoc(docID)
void retrieveBatchOfDocs(docID[],

destinationFile)

Figure 4: Example API functions.

4. Performance Evaluation
In this section, we report experiments that we conducted to
evaluate efficiency and scalability of iArabicWeb16.

4.1. Experimental Setup
We host the search server and conducted our experiments
on an Oracle Linux 7.4 server with 128 GB memory and 2
Intel Xeon E5-2660 v3 2.6 GHz CPUs having 40 cores in
total (20x2). In order to simulate users, we used a set of
7052 queries used for obtaining seed pages when crawling
ArabicWeb16.

4.2. Search Response Time
In this experiment, we measure the response time with re-
spect to the number of threads used for search tasks. Specif-
ically, we vary the number of search threads from 2 to 64,
and in each case, we issue 500 sequential search queries
sampled from our set from a single user (i.e., no concur-
rent search requests). The search queries are selected ran-
domly and the same query set is used for each case. For
each case, we compute the average search response time.
The results are depicted in Figure 5. The vertical bars rep-
resent the standard deviation across the queries for each
case. The Figure shows that the response time decreases
by a factor of 5 when the number of threads increases 32
times. This speedup is due to the fact that LS is capable of
searching many segments in parallel. Note that, although
we conducted an experiment at 64 threads, the final de-
ployed server can use up to 40 threads because the server
machine we used has a total of 40 cores.

4.3. Scalability
In this experiment, we test the scalability of iArabicWeb16.
We vary the number of users using the search engine con-
currently from 2 to 128, doubling in each case. For each
user, we run 10 queries randomly selected from our query
pool and compute the average response time over the 10
queries. We then compute the mean of average response
time of clients for each case. The results are shown in Fig-
ure 6. When we increase the number of users by 64 times,
the response time increases by a factor of 60 times, reach-
ing an average of 6.5 seconds when 128 users are issuing
queries in parallel to the server.

Figure 5: The average response time with varying number
of search threads. The vertical bars represent the standard
deviation across queries.

Figure 6: The response time of the server as the number
of concurrent users increases. The error bars represent the
average standard deviation across the clients.

5. Conclusion and Future Work

In this paper, we present iArabicWeb16, a search ser-
vice that makes ArabicWeb16, the largest publicly avail-
able Arabic Web crawl, more accessible to the research
community. Using iArabicWeb16, researchers can search
over ArabicWeb16 using the Web interface and the pro-
gramming API. iArabicWeb16 provides a flexible search
service in which users can choose different ranking func-
tions and search fields, and can get access to the content
of the retrieved Web pages. Our experiments showed that
iArabicWeb16 is an efficient research tool and can serve
multiple users at the same time with a reasonable response
time; therefore, it can be used by many researchers who
would like to use ArabicWeb16 in their research.
In the future, we plan to deploy the search engine in a dis-
tributed environment to further increase its efficiency. We
also plan to extend iArabicWeb16 to develop search topics
and collect relevance judgments in order to help researchers
construct their own test collection over ArabicWeb16.

Acknowledgments

This work was made possible by NPRP grant# NPRP 7-
1313-1-245 from the Qatar National Research Fund (a
member of Qatar Foundation). The statements made herein
are solely the responsibility of the authors.



References
Al-Maimani, M. R., Al Naamany, A., and Bakar, A. Z. A.

(2011). Arabic information retrieval: techniques, tools
and challenges. In GCC Conference and Exhibition
(GCC), 2011 IEEE, pages 541–544. IEEE.

Gey, F. C. and Oard, D. W. (2001). The TREC-2001 cross-
language information retrieval track: Searching arabic
using english, french or arabic queries. In TREC, pages
16–26.

Hasanain, M., Suwaileh, R., Elsayed, T., Kutlu, M., and
Almerekhi, H. (2017). EveTAR: Building a large-scale
multi-task test collection over Arabic tweets. Informa-
tion Retrieval Journal, pages 1–30.

Lin, J. and Efron, M. (2013). Overview of the TREC-2013
microblog track. In Proceedings of the 22nd Text RE-
trieval Conference, TREC ’13.

Lin, J., Efron, M., Wang, Y., and Sherman, G. (2014).
Overview of the TREC-2014 microblog track. In Pro-
ceedings of the 23rd Text REtrieval Conference, TREC
’14.

Ponte, J. M. and Croft, W. B. (1998). A language modeling
approach to information retrieval. In Proceedings of the
21st annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages
275–281. ACM.

Rachidi, T., Bouzoubaa, M., ElMortaji, L., Boussouab, B.,
and Bensaid, A. (2003). Arabic user search query cor-
rection and expansion. Proc. of COPSTIC, 3:11–13.

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu,
M. M., Gatford, M., et al. (1995). Okapi at TREC-3.
Nist Special Publication Sp, 109:109.

Shaw, J. A., Fox, E. A., Shaw, J. A., and Fox, E. A. (1994).
Combination of multiple searches. In The Second Text
REtrieval Conference (TREC-2, pages 243–252.

Suwaileh, R., Kutlu, M., Fathima, N., Elsayed, T., and
Lease, M. (2016). ArabicWeb16: A new crawl for to-
day’s Arabic web. In Proceedings of the 39th Interna-
tional ACM Conference on Research and Development
in Information Retrieval (SIGIR), pages 673–676. ACM.

Zhai, C. and Lafferty, J. (2004). A study of smooth-
ing methods for language models applied to informa-
tion retrieval. ACM Transactions on Information Sys-
tems (TOIS), 22(2):179–214.


	Introduction
	ArabicWeb16 Collection
	iArabicWeb16 Architecture
	Back-End
	Storing HTML Pages
	Indexing
	Searching
	Processing Search Requests

	Front-End
	Search Interface
	Programming API


	Performance Evaluation
	Experimental Setup
	Search Response Time
	Scalability

	Conclusion and Future Work

