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Abstract
Treatment of subjective language is a vital component of a sentiment analysis system. However, detection of subjectivity (i.e., subjective
vs. objective content) has attracted far less attention than sentiment recognition (i.s., positive vs. negative language). Particularly, online
social context and the structural attributes of communication therein promise to help improve learning of subjective language. In this
work, we describe successful models exploiting a rich and comprehensive feature set based on the structural and social context of the
Twitter domain. In light of the recent successes of deep learning models, we also effectively experiment with deep gated recurrent neural
networks (GRU) on the task. Our models exploiting structure and social context with an SVM achieve > 12% accuracy higher than a
competitive baseline on a blind test set. Our GRU model yields even better performance, reaching 77.19 (i.e., ~ 14.50% higher than the

baseline on the same test set, p < 0.001).

1. Introduction

Ability to detect subjective language (i.e., aspects of lan-
guage expressing opinions, feelings, evaluations, and spec-
ulations (Banfield, 1982)) is an important part of any real-
world sentiment system where a unit of analysis is usually
labeled as either objective (e.g., I read the book.) or sub-
jective. Subjective texts are further classified into senti-
ment categories as positive (e.g., This market is spectac-
ular!), negative (e.g., This machine is unfortunately very
slow.), or mixed (e.g., The new models are powerful, but
quite memory-intensive!). In spite of an excellent (early)
thread of literature targeting learning subjective language
that focused on utilizing lexical and syntactic information
(Wiebe et al., 2004; Wilson et al., 2006)), gender (Burger et
al., 2011; Rao et al., 2010; Volkova et al., 2013; Volkova et
al., 2015), and discourse features (e.g., punctuation, emoti-
cons) (Benamara et al., 2011), the field has focused more on
sentiment or polarity classification rather than subjectivity.
Particularly social media communication takes place in a
very different, yet rich, context: First, Twitter language di-
verges from the ‘standard’ offline language in various struc-
tural ways. For example, Twitter tweets are a maximum
of 140 characters per tweet. Twitter is also an environment
where users re-tweet other users, address them using an ‘@’
sign, tag tweets and/or launch tweet campaigns using hash-
tags, share URLSs, etc. Rather than viewing these unique
structural attributes of the Twitter domain as challenges, we
seek to exploit them for learning subjectivity in the context
of the microblogging platform.

Second, communication on Twitter happens against its
wider social context where user identities, gender, race,
age, economic class, etc. are all attributes that afford cues
which can be leveraged for social meaning extraction tasks
like that of subjectivity. Although (at times scattered) fea-
tures based on the structure of Twitter language and its so-
cial context have been used in the literature, a unified and
systematic analysis of the collection of structural and so-
cial context features that can inspire further work in the
field, especially for the Arabic language, is lacking. As
such, we describe novel and successful models exploiting a
rich feature set (totaling 30 features thematically organized
in 11 feature groups) based on the structural and social at-

tributes of the the Twitter domain. Examples of structural
features we employ include use of hashtags, non-standard
typography (e.g., letter repetition, use of emoticons), and
use of URLs. Instances of social features we leverage in-
clude user id and user gender. We provide a more detailed
account of our feature set in Section 4.1..

Third, while there are several methods for feature selection,
including for text classification (e.g., (Dash and Liu, 1997;
Yang and Pedersen, 1997; Forman, 2003; Chandrashekar
and Sahin, 2014)), finding the relevant features and the best
combinations of these from a feature set composed of a
large number of features can be challenging, if not impos-
sible. In this work, we introduce two methods of feature
selection aimed at identifying the best performing feature
combinations from among the 30 proposed features.
Finally, deep learning of natural language (LeCun et al.,
2015; Goodfellow et al., 2016; Goldberg, 2016) has shown
impressive successes in recent years. It is yet unknown,
however, to what extent a deep learning system would com-
pare to a system based on careful feature engineering using
domain knowledge of the type provided in this work in the
context of subjectivity classification. Our work here seeks
to at least partially bridge this gap by comparing a feature-
engineered system to a carefully-designed deep learning
system tackling the problem.

Overall, we make the following contributions: (1) We pro-
pose a rich set of structural and social context features that
we exploit for learning subjective language onnline (i.e.,
on a Twitter dataset), (2) We describe two feature selection
methods that enable a semi-exhaustive search for the best
feature combinations from a large number of features that
are otherwise hard to search, and (3) We develop a highly
effective gated recurrent neural network model for the task,
showing the utility of this class of methods and how it is
that these compare to our expertly hand-crafted system ex-
ploiting the features we introduce.

The rest of the paper is organized as follows: In section 2.,
we discuss related work. In Section 3., we describe our
dataset. In Section 4., we describe our models with hand-
crafted features. In Section 6., we introduce our model
based on gated recurrent neural networks and present its
results acquired with it. In Section, 7. we conclude.



2. Related Work

Subjectivity in Natural Language Subjectivity in human
language, as introduced earlier, refers to aspects that
express opinions, feelings, evaluations, and speculations
(Banfield, 1982). There is a vast literature on subjectivity
and sentiment analysis. Early computational treatment
of subjectivity (e.g., (Wiebe, 2000; Wilson et al., 2006))
focused on the lexical and syntactic cues characterizing
subjective texts. Our work differs in that we utilize
structural and social context features. More recent works
investigate exploiting demographic features of the type
we incorporate in our feature set here. Especially gender
has received significant attention as an attribute that
correlates with subjective language (Burger et al., 2011;
Rao et al., 2010; Volkova et al., 2013; Volkova et al.,
2015). Discourse features, including punctuation- and
emoticon-based features, have also been studied in the
context of improving subjectivity detection (Benamara et
al., 2011).

A number of social context features have also been used
for predicting phenomena related to subjectivity. For ex-
ample, (Persing and Ng, 2014) employ information related
to political orientation, relationship status, and health
behavior (e.g., drinking, smoking) to predict voting from
comments posted on a polling social platform. Similarly,
(Thomas et al., 2006) report benefiting from user mentions
(e.g., using the “@”) network for predicting votes and
(Tan et al., 2011) acquire enhanced sentiment classification
by incorporating the Twitter follower/followee and user
mentions network. (Hasan and Ng, 2013) incorporate
sequential user interactions and ideological orientation
in debate web fora for stance detection. (Deng et al.,
2014) similarly use network-based information between
users to improve sentiment classification both at the post
and user levels. (Ren et al., 2016) embed user tweets
and topics in a neural framework for improving Twitter
sentiment analysis. Likewise, a number of researchers,
e.g., (Mohammad and Kiritchenko, 2015; Purver and
Battersby, 2012; Wang et al., 2012) makes use of Twitter
hashtags as a way to automatically label data for the
related task of emotion detection, while a string of works
considers textual clues (e.g., negation, epistemic modality)
interacting with subjective language (Wiegand et al., 2010;
Kennedy and Inkpen, 2006). Our work is is similar in that
we exploit a wide range of these features, while expanding
them and proposing methods enabling searching for their
best combinations in the context of classification.

For modeling the related task of sentiment, researchers
have typically exploited lexical features using simple
frequency statistics of input text (Wiebe, 2000; Wiebe
et al.,, 2004), or modeling the semantics of certain word
categories, e.g., dynamic and gradable adjectives (Hatzi-
vassiloglou and Wiebe, 2000) or different semantic classes
of verbs (Benamara et al., 2007; Breck et al., 2007)).

A considerable body of the literature has focused on de-
veloping or learning polarity lexica (Lin and Hauptmann,
2006; Baccianella et al., 2010; Turney, 2002). Other works

have exploited syntactic features like part of speech tags
(Gamon, 2004; Hatzivassiloglou and McKeown, 1997)
and different N-gram windows as a measure to capture
(potentially syntactic) context beyond single words (Ng
et al., 2006; Cui et al., 2006), syntactic constituents, e.g.,
(Klenner et al., 2009; Wilson et al., 2005), dependency
parses, e.g., (Kessler and Nicolov, 2009; Zhuang et al.,
2006; Ng et al., 2006), etc. A few studies have focused on
languages of rich morphology, including (Abdul-Mageed
et al,, 2014) who built systems using gold-processed,
treebank data exploiting mophosyntactic information.
Other works on Arabic involved building resources that
were then used for developing models primarily based
on N-gram features (Aly and Atiya, 2013; ElSahar and
El-Beltagy, 2015; Mourad and Darwish, 2013) or sub-word
information (Abdul-Mageed, 2017b; Abdul-Mageed,
2017a). Some works have focused on modeling dialects
(Abdul-Mageed et al., 2014), or the related task of emotion
(Abdul-Mageed et al., 2016), yet these remain relatively
limited.  Recent efforts to collect large-scale Arabic
dialectal corpora promise to aid dialect-specific sentiment
research (Abdul-Mageed et al., 2018). The focus of our
work is different in that we target structural and social
features.

Deep Learning Models An increasingly growing number
of studies have applied deep neural networks to the prob-
lem of sentiment analysis. These include, e.g., (Labutov
and Lipson, 2013; Maas et al., 2011; Tang et al., 2014b;
Tang et al., 2014a) who learn sentiment-specific word
embeddings (Bengio et al., 2003; Mikolov et al., 2013)
from neighboring text. Some studies have focused on
learning semantic composition (Mitchell and Lapata, 2010;
Socher et al., 2013; Irsoy and Cardie, 2014; Li et al., 2015;
Le and Mikolov, 2014; Tang et al., 2015) for modeling
sentiment. Long-short term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Neural Nets
(GRUs) (Cho et al., 2014; Chung et al., 2015), variations
of recurrent neural networks (RNNs) have also been used
successfully for sentiment analysis (Ren et al., 2016; Liu
et al., 2015; Tai et al., 2015; Tang et al., 2015; Zhang et
al., 2016). Convolutional neural networks (CNNs) have
also been quite successful, including on sentiment analysis
(Blunsom et al., 2014; Kim, 2014; Zhang et al., 2015). A
review of neural network methods for NLP can be found
in (Goldberg, 2016). Our work is similar to these works
in that we use GRUs for learning subjective language,
basically a text classification task.

For a more comprehensive background on modeling sub-
jectivity and sentiment, readers can refer to a number of ex-
cellent comprehensive overviews, including (Pang and Lee,
2008), (Liu, 2012), and (Montoyo et al., 2012). In addition,
(Benamara et al., 2017) provide a more recent thorough re-
view of various aspects of evaluative text, including some
aspects of social context ! (e.g., social network structure
and user profiles).

!(Benamara et al., 2017) use the term ‘extra-linguistic infor-
mation’ to refer to what we call social context in this paper.



3. Data Set and Annotation

For this work, we collect a corpus of 3,015 Arabic Tweets
from the public Twitter timeline and task two college-
educated native speakers of Arabic on labeling the data
after providing detailed annotation instructions and train-
ing as described in (Abdul-Mageed et al., 2014). The data
were manually inspected for possible duplicates before we
shared with the annotators, and so the 3, 015 are unique. Ta-
ble 1 shows the the distribution of the SSA categories over
the data. As Table 1 shows, 47.36% of the data are assigned
an objective (OBJ) tag and the remaining 52.64% has one
of the various subjective tags: Positive (S-POS), negative
(S-NEG), and mixed (S-MIXED). ? Inter-annotator agree-
ment on the data reached a Cohen (Cohen, 1996) Kappa
(K)= 85%. We take the labels assigned by a random judge
from among the two annotators to be our gold standard. As
Arabic is known to have multiple dialects in addition to its
modern standard variety, we also ask annotators to assign
each tweet a tag representing whether the variety is Mod-
ern Standard Arabic (MSA) or dialectal Arabic (DA). The
MSA of the corpus comprises 1,466 (% = 48.62) tweets,
and the dialectal part comprises 1,549 (% = 51.38) tweets.
We do not exploit these language variety tags for this work.

4. Models Based on Hand-Crafted Features
with Support Vector Machines

We both use a classical machine learning classifier, intro-
duced here, and a deep learning classifier, which we will
introduce in Section 6.. For our models with hand-crafted
features, we use an SVM (Vapnik, 1995) classifier with
a linear kernel. SVMs are know to perform well on text
classification (Joachims, 2002), especially with carefully-
designed feature sets. We now turn to introducing our gated
recurrent neural network model.

4.1. Features

In order to exploit the structural and social context, we in-
troduce a very rich feature set composed of a total of 30
features. To facilitate reference, we divide these features
thematically (with as much coherence per group as is pos-
sible) into 11 groups. Although the features target the Twit-
ter domain, we believe they can also be exploited for other
domains like chat fora. Our features are inspired by re-
search within the sentiment literature, but also by related
areas such as stance detection (Hasan and Ng, 2013), vot-
ing prediction (Thomas et al., 2006; Persing and Ng, 2014),
and social media and computer-mediated communication
(Herring, 2007; Androutsopoulos and BeiBwenger, 2008;
Herring et al., 2013; Bieswanger, 2013). We now describe
our feature set.

User Gender: Inspired by gender variation research ex-
ploiting social media data, e.g., (Herring, 1994), and previ-
ous research on sentiment analysis (Volkova et al., 2013),
we applied three gender (gen) features corresponding to the
set {hasMale, hasFemale, unknown}. (Abdul-Mageed et

2 Although the focus of the current work is on the binary clas-
sification task of detecting whether a given tweet is OBJ or SUBJ,
we also provide negative experiments on the sentiment data (as
described in Section 5.).

al., 2014) suggest that there is a relationship between po-
liteness strategies and sentiment expression. And gender
variation research in social media has found that expression
of linguistic politeness (cf. (Brown and Levinson, 1987))
differs based on the gender of the user: (Herring, 1994)
identified gender differences in expressions of linguistic
politeness in ways that interact with sentiment expression.
(Herring, 1994) maintains that women are more likely than
men to observe positive politeness through, e.g., thanking,
while men prefer ‘candor’ and assertion of opinion, even
when it conflicts with other people’s opinions; such behav-
iors might interact with the type of subjectivity data carries.
User ID: The user id (uid) labels are inspired by research
on Arabic Twitter [citation removed for blind review] show-
ing that a considerable share of tweets is produced by orga-
nizations such as news agencies as opposed to lay users.
Hence, two features from the set {person, organization}
are employed for classification. The assumption we make
is that tweets from persons will have a higher correlation
with expression of subjectivity than those from organiza-
tions.

URL and Quotation: (a). hasURL: A binary feature in-
dicating the existence of a URL in a tweet or lack thereof.
(b). hasQuotation: A binary feature indicating whether a
unit of analysis has quotation marks or not.

Existence of Latin: hasLatin: A binary feature indicating
the existence of a Latin-alphabeted word in a tweet or lack
thereof.

Speech-like Features: (a). hasLetterRepetition: A binary
feature indicating the existence of a sequence of the same
letter within a given word with a frequency > 3 in a tweet or
lack thereof. (b). hasLaughter: A binary feature indicating
the existence of the laughter word ‘haha’ or the laughter
word ‘hehe’ in a tweet or lack thereof.

Emoticons: (a). hasEmoticon: A binary feature indicating
the existence of an emoticon from the set { )’, )", (%,
(5 d’, (20, ), D’} in a tweet or lack thereof. (b).
hasPositiveEmoticon: A binary feature indicating the exis-
tence of an emoticon from the set {*:)’, :d’, :; {(:’, D’}
in a tweet or lack thereof. (c¢). hasNegativeEmoticon: A
binary feature indicating the existence of an emoticon or
emoticon-like interjection from the set {:(’, °):’, ‘ugh’} in
a unit of analysis or lack thereof.

Hashtags and Retweets: (a). hasHashtag: A binary fea-
ture indicating the existence of a hashtag ‘#’ in a data point
or lack thereof. (b). hasMultipleHashtags: A binary fea-
ture indicating the existence of two or more hashtags in a
tweet or lack thereof. (c). hasLongHashtag: A binary fea-
ture indicating the existence of a hashtag of either length
> 9 characters or with an underscore ‘_’ in a data point or
lack thereof. (d). isRetweet: A binary feature indicating
whether a post is a retweet (has the prefix ‘RE,” as is the
norm in Twitter usage) or not.

Addressees: (a). hasAddressee: A binary feature indicat-
ing the existence of a username (as detected by the exis-
tence of an initial ‘@’ sign in a string) in a tweet or lack
thereof. (b). hasMultipleAddressees: A binary feature in-
dicating the existence of two or more usernames in a tweet
or lack thereof.

Punctuation: (a). hasExclamation: A binary feature indi-



Table 1: Data statistics

Data set | OBJ S-POS S-NEG S-MIXED # Tweets
MSA 960 (65.48%) 226 (15.42%) | 186 (12.69%) | 94 (6.41%) 1,466
DA 468 (30.21%) 257 (16.59%) | 573 (36.99%) | 251 (16.20%) | 1,549
ALL 1,428 (47.36%) | 483 (16.02%) | 759 (25.17%) | 345 (11.44%) | 3,015

cating the existence of an exclamation mark in a data point
or lack thereof. (b). hasMultipleExclamation: A binary
feature indicating the existence of two or more exclamation
marks in a tweet or lack thereof. (c¢). hasQuestionMark: A
binary feature indicating the existence of a question mark
in a unit of analysis or lack thereof. (d). hasMultipleQues-
tionMark: A binary feature indicating the existence of two
or more question marks in a tweet or lack thereof.

Word Length: (a). hasAvgShortWords: A binary fea-
ture indicating whether the average word length of a unit
of analysis is < 5 characters or not. (b). hasAvgMedi-
umWords: A binary feature indicating whether the average
word length of a tweet is at least 5 characters but < 7 char-
acters or not. (c). hasAvgLongWords: A binary feature in-
dicating whether the average word length of a tweet is > 7
characters or not.

Unit Length: (a). hasShortLength: A binary feature indi-
cating whether the length of a unit of analysis is < 4 words
or not. (b). hasMediumLength: A binary feature indicating
whether the length of a unit of analysis is at least 4 words
but < 8 words or not. (c). hasLongLength: A binary fea-
ture indicating whether the length of a tweet is at least 8
words but < 14 words or not. (d). hasVeryLongLength: A
binary feature indicating whether the length of a data point
is > 13 words or not.

4.2. Experimental Setup

Data Splits & Settings: We split the data into 80% train-
ing (TRAIN), 10% development (DEV), and 10% testing
(TEST). We use three experimental settings as follows:
Individual Features (IVF): We add each of the individual
features independently to the baseline bag-of-word (bow)
setting and perform classification, thus measuring the util-
ity of each of these features as combined with the simple
bow baseline.

Whole Feature Set (WH): The whole feature set of 30 fea-
tures is added to the baseline bow setting, and classification
is performed. The way this setting is engineered is that
any of the features that exist in any of the sentences used
is added to the sentence vector, at the sentence level. This
method allows identifying the utility of adding all the fea-
tures combined on the classification task.

Feature Selection: Since some of the features may be more
relevant than others to the task and since a feature can pos-
sibly perform differently based on the group of features it is
used with, we also perform feature selection with a number
of configurations, as follows:

Exhaustive feature group selection (FG): A search with all
possible combinations of feature groups of the feature set is
performed. In this setting, each group of the feature groups
we described above is combined with zero or more groups,
such that all possible combinations of the feature groups
are considered. This method is better than the popular hill

climbing’ methods, whether in a forward or backward se-
lection fashion. In forward selection, a given feature is
added to a basic feature set, and if found useful, the feature
is added to the basic feature set. Otherwise it is discarded,
and the rest of the features are added in the same way to
the basic feature set (which, after each iteration, includes
more of the features of interest). The process continues un-
til all features are considered, then the final performance is
reported. Forward selection is described as ‘hill climbing’
search since it proceeds based on the potential gain each
considered feature achieves in the classification process.
Backward selection is similar to forward selection, except
that the classification starts with all the basic features, as
well as all the features of interest, and a feature is dropped
during each iteration to identify whether this ablation helps
or hurts classification. The feature of interest is removed
if its removal helps the classification, and the process is
repeated. Like forward selection, backward selection pro-
ceeds based on potential gains removal of individual fea-
tures can achieve. Exhaustive feature group search (FG) is
better than hill climbing on feature groups in that during it,
all possible combinations of groups of features are consid-
ered; hence any gains possible by any of such combinations
are identified. This is different from hill climbing on feature
groups, since hill climbing is not exhaustive and hence can
miss possible feature group combinations that can achieve
optimal performance. The down side of exhaustive search
is its computational cost. However, this disadvantage is mi-
nor, since the process is performed offline. In addition, ex-
haustive search is practically possible only on a small fea-
ture set as the feature groups comprise here.

Monte Carlo feature selection (MC): A random sample
of varying sizes from 1 to 30 of the individual features is
added to the baseline bag-of-words setting, and classifica-
tion is performed. This procedure is repeated 10K times,
each time with a different random sample of a different size,
such that different combinations of the individual features
are possible. The Monte Carlo method is useful since, with
a large number of iterations as in the case of 10K, it is very
likely that all possible combinations of individual features
will be considered. The Monte Carlo method is preferred
for mimicking exhaustive feature search with the individ-
ual 30 features. Attempting to perform individual feature
exhaustive search with a procedure other than the Monte
Carlo method would be extremely computationally costly
and probably not needed, since processing the 30 social
context features would mean 30! operations.

Procedure: We typically train classifiers on TRAIN, tune
performance on DEV (e.g., to identify the performance of
different sets of feature combinations and select overall
best-performing feature set), and blind-test on TEST. For
all the experiments, we use an SVM classifier with a lin-
ear kernel. We provide results on both DEV and TEST, as



appropriate.

Evaluation: Results are reported in terms of overall accu-
racy (acc) and F'i-score for the OBJ class (F1-O ) and the
SUBJ class (F1-S). Since the majority class in our train-
ing data is low (= 52.64%), we use a baseline that is 10%
higher. More specifically, we use performance with bag-of-
words input (bow) on DEV (acc = 62.67%) as our baseline.

4.3. Results

As Table 2 shows, on DEV, the whole feature set (WH)
achieves a gain of 6.34% accuracy (acc) over the baseline
bag-of-words (bow). In addition, the bow baseline is out-
performed by the exhaustive group feature selection (FG)
with 7.00% acc and by the Monte Carlo exhaustive fea-
ture selection method (MC) with 7.33% acc. Similarly, on
TEST, the baseline is outperformed by WH and FG (with
12.74% acc for both cases), and by MC with 12.08% acc.
All the gains are statistically significant (p < 0.001). Ob-
servably, TEST seems an easier set than DEV as indicated
by its bow performance (at 66.23 acc) (vs. the baseline
DEV bow, with acc = 62.67). Compared to the TEST bow
performance, the models across all the experimental condi-
tions on TEST are also highly successful and remain within
statistical significance (p < 0.001): WH gains 9.18% acc,
FG gains 9.18% acc, and MC gains 8.52% acc. We now
turn to analyzing performance with each of our experimen-
tal settings.

FG Method: The FG method helps achieve the improve-
ment with a number of feature group combinations. A con-
sideration of these combinations shows that almost all the
groups were chosen in one or another of them. In some of
the selected combinations, some of the groups that were
useful in other combinations were absent. For example,
one of the combinations includes all the feature groups ex-
cept the hasLatin feature, the speech-like features, and the
hashtag features. These three specific feature groups were
useful for the classification in other combinations that were
also found to render the same classification improvement.
This suggests that the FG feature selection method found
intricate interactions among the groups. The importance of
these groups of features is also reflected in the fact that the
individual features within these groups were also selected
via the MC method, whose performance we now turn to
explaining.

MC Method: Similarly, in the MC method, several feature
combinations were chosen. Again, an examination of these
combinations shows that almost all the individual features
were selected in one or another of the different combina-
tions. For example, one of the combinations that achieved
the best performance reported includes all the features ex-
cept the three features hasHashtag, hasQuestionMark, and
hasIsMediumLength.

IVF Method: Regarding experiments with the IVF feature
engineering method, results show that the gender (gen) fea-
ture group, the user ID (uid) feature group, the hasHashtag
feature, and the hasURL feature were useful for classifica-
tion when added independently, as shown in Table 3.
Gender: The gender-based features proved useful for clas-
sification. In TRAIN, the distribution difference especially
between the female and the unknown features within the ob-

jective and subjective classes is large enough to help classi-
fication: The female feature occurs in 25.14% of the subjec-
tive class data and 16.09% in the objective class data. For
unknown, it occurs in 33.53% of the objective class cases
and 14.92% of the subjective class. The uid group was also
especially useful, with noticeably different distribution in
TRAIN: The person feature occurs in 95.47% of the sub-
jective class and in 80.29% of the objective class, whereas
organization occurs in 19.71% in the objective class and
4.53% in the subjective class. A consideration of both
TRAIN and DEV data shows that organizations seem to be
more concerned with tweeting information objectively, per-
haps as a way to gain credibility. After all, many of these
organizations are news outlets interested in keeping their
audiences’ interest and trust, and (at least ostensibly,) un-
biased coverage is important for them (Abdul-Mageed and
Herring, 2008).

URL: The hasURL feature was also useful for classifica-
tion. Based on TRAIN, tweets containing URLs are twice
as likely to be in the objective (52.91%) class than the sub-
jective class (23.17%). This is the case because URLs are
more likely to be associated with information provision in
the context of advertising, e.g., where users are encouraged
to visit a website promoting some commodity. The follow-
ing are two examples:

& > 9=l http://bit ly/iklvh.
Buck. ‘mhnds mdnY wArgb fY Alsfr IEml fY
AlsEwdyp http://bit.ly/iklvIh’

Eng. ‘[’m a] civil engineer and need a job in KSA
http://bit.ly/iklvJh.

o () Laedll w¥te 2, 2L,

ollae]l &g pryovr
http://goo.gl/fb/mBc2b.

Buck. ‘brnAmj yrnAmj m$glAt AlmAltymydyA
3.2.5.1306 fY Oxr ISdArAt http://goo.gl/fb/mBc2b.

Eng. ‘Software software [sic] for playing multimedia
3.2.5.1306 in its latest release http://goo.gl/fb/mBc2b.’

Questions: Similarly, based on TRAIN, questions are more
likely to occur in objective, information seeking tweets
(7.83%) than in subjective tweets (6.84%). The following
is an example of an objective question:

e B) e bl Y o Ol (L2
oplaa (gl C\Is Olis ot (s
(Buck. ‘mmkn AErf myn fY Hrkp 6 Abryl mn
Eyn msEAn mHtAj AtEAwn mEAhm.”; Eng. ‘Can

I know who in April 6 Movement is in Ein Shams so
that I contact them[?]’).

Exclamation Marks: Unlike question marks, exclama-
tion marks are quite expectedly more frequent in subjec-
tive cases than in objective cases in TRAIN. The hasExcla-
mation feature occurred with a frequency of 6.84% in the
subjective class and 3.12% in the objective class. Likewise,



Table 2: Results with whole set (WH), exhaustive group selection (FG), and Monte Carlo selection (MC)

OBJ SUBJ
setting acc avg-f | prec | rec f prec | rec f
base (bow) | 62.67 | 62.56 | 51.19 | 74.14 | 60.56 | 77.27 | 55.43 | 64.56
DEV | WH 69.00 | 68.08 | 58.65 | 67.24 | 62.65 | 77.25 | 70.11 | 73.50
FG 69.67 | 68.91 | 59.12 | 69.83 | 64.03 | 78.53 | 69.57 | 73.78
MC 70.00 | 69.28 | 59.42 | 70.69 | 64.57 | 79.01 | 69.57 | 73.99
TEST | bow 66.23 | 65.69 | 54.67 | 70.09 | 61.42 | 77.42 | 63.83 | 69.97
WH 75.41 | 73.96 | 68.10 | 67.52 | 67.81 | 79.89 | 80.32 | 80.11
FG 75.41 | 73.96 | 68.10 | 67.52 | 67.81 | 79.89 | 80.32 | 80.11
MC 74.75 | 73.27 | 67.24 | 66.67 | 66.95 | 79.37 | 79.79 | 79.58

Table 3: Individual features acquiring classification gains

OBJ SUBJ
Acc Avg-F | Prec | Rec F Prec | Rec F

bow | 62.67 | 62.56 | 51.19 | 74.14 | 60.56 | 77.27 | 5543 | 64.56

DEV | gen + 63.67 | 63.37 | 52.23 | 70.69 | 60.07 | 76.22 | 59.24 | 66.67
uid + 65.00 | 64.72 | 53.5 | 72.41 | 61.54 | 77.62 | 60.33 | 67.89
hasHashtag + 63.33 | 63.2 51.81 | 74.14 | 60.99 | 77.61 | 56.52 | 65.41
hasPositiveEmot | + 63.00 | 62.88 | 51.5 | 74.14 | 60.78 | 77.44 | 55.98 | 64.98
hasURL + 68.00 | 67.22 | 57.25 | 68.1 | 622 | 77.16 | 67.93 | 72.25

TEST | gen + 66.89 | 66.12 | 55.63 | 67.52 | 61.00 | 76.69 | 66.49 | 71.23
uid + 68.20 | 6691 | 57.81 | 63.25 | 60.41 | 75.71 | 71.28 | 73.42
hasHashtag + 66.89 | 66.36 | 55.33 | 70.94 | 62.17 | 78.06 | 64.36 | 70.55
hasPositiveEmot | + 66.23 | 65.69 | 54.67 | 70.09 | 61.42 | 77.42 | 63.83 | 69.97

hasURL + 71.15 | 69.59 | 62.18 | 63.25 | 62.71 | 76.88 | 76.06 | 76.47

the hasExclamationRepetition feature was more frequent in
the subjective class (with 1.57%) than in the objective class
(0.67%). The following is an example of a subjective tweet
employing multiple exclamation marks:

o @) Jomer S5 s o g i U
APy e G O] #2110 s
5B e Ml
Buck. ‘OnA btfrj E1Y fydyw dlwqtY hyjyblY

kwAbys !!! wADH In fY mnAfs IOHmd
zbAydr !!! m$ qAdr’

Eng. ‘I'm watching a video right now[.] T’ll have
nightmares!!! Clearly, there’s a competitor to Ahmad
Spider!!! I can’t take it.

Emoticons: Although emoticons are usually viewed as
symbols associated exclusively to subjective language, our
annotators indeed assigned OBJ tags to a number of cases
where positive emoticons occur. Positive emoticons, how-
ever, were more frequent in the subjective class (2.97%)
than in objective class (1.18%). The following is an exam-
ple of a smiley face in a subjective tweet:

o (5) sl Ul (55 daadle sl 3 13l 1K
Buck. ‘$krA wI*A fY OY mlIAHZp trY OnA Itgbl
Alngd ..

Eng. ‘Thanks[!] And let me know if you have any
feedback([;] I take criticism.. :)’

Hashtags: The hasHashtag feature is also useful for clas-
sification as, in TRAIN, the feature is more frequent in the
subjective class (with 0.49%) than in the objective class
(with 0.34%). In DEV, the feature only occurred in subjec-
tive cases. Since hashtags are sometimes used to mark the
topic of a tweet and have the potential to contribute to the
popularity of a (trending) topic, they are used for campaign-
ing in Twitter. Indeed, hashtags have played an important
role in online activism in the Arab world (and elsewhere).
In TRAIN, it is clear that political campaigning is an im-
portant function for which hashtags are used.

Sometimes users employ hashtags of more than one word,
where the words are simply concatenated (potentially sep-
arated by an underscore). Longer hashtags are especially
more frequent in the TRAIN subjective class (with a fre-
quency of 0.08%) than in objective class (where they are
totally absent). The same bias occurs in DEV (where their
frequency is 0.54% in the subjective class and zero in the
objective class). Examples of such hashtags are #egygilrs,
#mubarakregrets, #wheniwasakidithought, #newegypt, and
#3eshnaooshifna (Eng. ‘Look what is happening’).3

3In May 2010, when the dataset was being collected, hash-
tags in Arabic Twitter were exclusively in English, as Twitter did
not allow use of hashtags with Arabic words. As explained ear-
lier, even if a user wanted to use a hashtag with an Arabic word,
the word would not be clickable. As of the writing of this pa-
per, Arabic Twitter users employ a mixture of Arabic and English
hashtags.



5. Negative Experiments

In order to test the performance of the feature set we pro-
pose here on sentiment classification, we run experiments
with all the three settings on the polarity task (positive vs.
negative) using the part of our data labeled with S-POS and
S-NEG tags. With the SVMs classifier, we find that the
WH, FG, and MC models outperform the baseline (bow
on DEV, acc = 68.09%) on the DEV data with 71.63%,
73.05%, and 73.76% respectively, but not on TEST where
performance of these models drops to the same accuracy
of 65.67% with each of the three settings. We conclude
that the structural and social context features we propose
are better suited for learning subjective (but not polar) lan-
guage, and so we do not proceed with further experiments
with GRUs on the polarity task.

6. Recurrent Neural Networks Models

Our deep learning model is based on a gated neural net-
work. We now further introduced this class of methods.
For notation, we denote scalars with italic lowercase (e.g.,
x), vectors with bold lowercase (e.g.,X), and matrices with
bold uppercase (e.g.,W).

Recurrent Neural Network A recurrent neural network
(RNN) is a neural network architecture that, at each time
step t, takes an input vector x; ¢ R™ and a hidden state vec-
tor h ;_; ¢ R™ and produces the next hidden state h ; by
applying the following recursive operation:

ht = f (WXt + Uhtfl + b) (1)

Where the input to hidden matrix W ¢ R”*", the hidden to
hidden matrix U ¢ R™*™, and the bias vector b ¢ IR" are
parameters of an affine transformation and f is an element-
wise nonlinearity. In theory, this design should enable an
RNN to capture all historical information up to time step
h;. In practice, however,RNNs suffer from the problems
of vanishing/exploding gradients (Bengio et al., 1994; Pas-
canu et al., 2013) while trying to learn long-range depen-
dencies.

LSTM Long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) are designed to ad-
dresse this very problem of learning long-term dependen-
cies: LSTMs are basically a variation of RNNSs that are aug-
mented with a memory cell ¢; ¢ R™ at each time step. As
such, in addition to the input vector x;, the hidden vector
h;_1, an LSTM takes a cell state vector ¢;_; and produces
h; and c¢; via the calculations below:

i, =0 (Wa, +Uh,y +b")

f, =0 (W2, + U'h,_; +b)
o, =0 (Woz; + U%hy_; +b°)

g, = tanh (W92, + U%h;,_; + bY)
g=foc1+iOg

h; = 0; ©® tanh(c;)

(@)

Where o(-) and tanh(-) are the element-wise sigmoid and
hyperbolic tangent functions, ® the element-wise multipli-
cation operator, and i, f;, 0; are the input, forget, and out-

put gates. The g, is a new memory cell vector with candi-
dates that could be added to the state. The LSTM parame-
ters W, U;, and b; are for j € {7, f,0,g}.

GRUs (Cho et al., 2014; Chung et al., 2015) propose a vari-
ation of LSTM with a reset gate r;, an update state z;, and
a new simpler hidden unit hy, as follows:

rs =0 (erﬂt + Urht,1 + br)
. =0 (WZ.It + Uzht_l + bz)

. z ; 3
h; = tanh (Wl‘t + 1y * Uhht_l + bh) )

ht:Zt*htfl"‘(]-_zt)*ﬁt

The GRU parameters W, U, and b; are for j € {r, z, h}.
In GRUs, the hidden state is forced to ignore a previous
hidden state when the reset gate is close to 0, thus enabling
the network to forget or drop irrelevant information. In ad-
dition, similar to an LSTM memory cell, the update gate
controls how much information carries over from a previ-
ous hidden state to the current hidden state. GRUs are sim-
pler and faster than LSTM, and so we use them instead of
LSTMs in this work.

Network Architecture & Hyper-Parameters For GRUs,
we use the same data split as described above with SVMs:
80% TRAIN, 10% DEYV, and 10% TEST. We optimize the
GRU hyper-parameters on the DEV set. We use a vocabu-
lary size of 100K words, a word embedding vector of size
300 dimensions that we learn directly from the TRAIN,
an input maximum length of 30 words, 2 epochs, and the
Adam (Kingma and Ba, 2014) optimizer with a learning
rate of 0.001. We use a GRU layer with 500 units input,
followed by 3 dense layers each with 1,000 units. To reg-
ularize the network, we use dropout (Hinton et al., 2012)
with a dropout rate of 0.5 after the first dense layer. For
our loss function, we use binary cross-entropy. We use a
mini-batch (Cotter et al., 2011) size of 128.

6.1. Results

Table 4 shows the best results acquired with feature engi-
neering using our SVM classifier on both DEV and TEST
from the previous section. As Table 4 shows, our GRUs
model achieve an accuracy of 77.66% on DEV. This is
~ 15% higher than our baseline (base). On TEST, the
model achieves 77.19, which is 14.52% higher than the
baseline. This gain on TEST is also 10.96% higher than an
SVM bag-of-words (bow) classifier on the same TEST set.
Compared to the best accuracy on TEST with SVMs (ac-
quired both with WH and FG, both at 75.41%), not to our
surprise GRUs are 1.78% higher. This, however, empha-
sizes the utility of our feature set with the SVMs approach.
Interestingly, the SVM models are better when it comes to
detecting the SUBJ class: On TEST, our best SVMs models
are a whooping 41.51% F1-score higher than GRUs. The
same observation holds with the results on DEV as well,
with ~ 21% edge for the SVM classifier. It can be immedi-
ately seen that improvements are possible by simply com-
bining predictions from the models with both approaches
in an ensemble set up. We cast further investigation in this
direction as potentially promising future research.



Table 4:

Results with Gated Recurrent Neural Networks

OBJ SUBJ
setting acc avg-f | prec | rec f prec | rec f
base (svm bow) | 62.67 | 62.56 | 51.19 | 74.14 | 60.56 | 77.27 | 55.43 | 64.56
DEV | MC 70.00 | 69.28 | 59.42 | 70.69 | 64.57 | 79.01 | 69.57 | 73.99
GRU 77.66 | 76.54 | 81.59 | 89.45 | 85.34 | 62.30 | 46.34 | 53.15
TEST | bow (svm) 66.23 | 65.69 | 54.67 | 70.09 | 61.42 | 77.42 | 63.83 | 69.97
WH 7541 | 73.96 | 68.10 | 67.52 | 67.81 | 79.89 | 80.32 | 80.11
FG 7541 | 73.96 | 68.10 | 67.52 | 67.81 | 79.89 | 80.32 | 80.11
GRU 77.19 | 76.02 | 77.90 | 95.98 | 86.00 | 70.97 | 26.51 | 38.60

7. Conclusion

We described successful models for learning subjective lan-
guage from the Twitter domain. For learning, we intro-
duced a framework of structural and social context features
and showed its utility in classification with an SVMs ap-
proach. More specifically, our rich feature set totals 30
individual features that we also organize thematically into
11 different groups. Further, we introduced two feature
selection methods, a Monte Carlo (MC) method for pick-
ing the best combinations of individual features and an-
other method for exhaustive feature group selection (FG).
We also analyzed the performance of the different combina-
tions of feature groups as well as the individual successful
features on the task, with illustrative examples. Our best
performing model with these hand-crafted features on the
blind test set is > 12% higher than our baseline. In addi-
tion, we carefully developed a highly successful deep gated
recurrent neural network classifier that yields ~ 14.50%
accuracy gains over our baseline. Comparing the classical
SVMs classifiers to the GRUSs on the task, we show the util-
ity of our rich feature set and identify a promising route for
future research where these approaches can be combined.
Other future directions include expanding our work to other
domains and possibly other languages.
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