
Uneek: a Web Tool for Comparative Analysis of Annotated Texts

Per Malm1, Malin Ahlberg2, Dan Rosén2

1Department of Scandinavian Languages, Uppsala University, Sweden
2Språkbanken, University of Gothenburg, Sweden

per.malm@nordiska.uu.se, malin.ahlberg@gu.se, dan.rosen@svenska.gu.se

Abstract
In this paper, we present Uneek, a web based linguistic tool that performs set comparison operations on raw or annotated texts. The tool
may be used for automatic distributional analysis, and for disambiguating polysemy with a method that we refer to as semi-automatic
uniqueness differentiation (SUDi). Uneek outputs the intersection and differences between their listed attributes, e.g. POS, dependencies,
word forms, frame elements. This makes it an ideal supplement to methods for lumping or splitting in frame development processes. In
order to make some of Uneek’s functions more clear, we employ SUDi on a small data set containing the polysemous verb bake. As of
now, Uneek may only run two files at a time, but there are plans to develop the tool so that it may simultaneously operate on multiple
files. Finally, we relate the developmental plans for added functionality, to how such functions may support FrameNet work in the future.

Keywords: frame development, distributional method, automated comparative analysis, polysemy disambiguation

1. Introduction
Uneek is a web based linguistic tool that automatizes com-
plex comparative tasks. It takes two input files (txt or xml)
and outputs their intersection, and/or the differences be-
tween them. This makes Uneek a suitable aid in frame
development processes, e.g. to the splitting or lumping
schemes described in Ruppenhofer et al. (2016). The ben-
efits of the program is further illustrated in an example of
polysemy disambiguation through a method we refer to as
semi-automatic uniqueness differentiation (SUDi).
There are other approaches available to polysemy disam-
biguation. For example, one may choose a more statis-
tical approach such as Drouin (2003) using TermoStat, a
software designed for term extraction that determines the
specificity of words in a domain-specific corpus compared
to a larger reference corpus. One may also choose a more
qualitative approach, e.g. Ruppenhofer et al. (2016) where
the disambiguation of a polysemous form is based on the
semantic frames they evoke. In this setting, SUDi may be
considered a supplementary method to the same problem.
The paper is organized as follows: in Section 2, we present
Uneek. Section 3 holds a presentation on how to use Uneek
for polysemy disambiguation in SUDi. The final Section 4
contains some closing remarks and plans for future work.

2. Uneek
Uneek is an open source project, and the code is avail-
able under the MIT-license.1 It is a tool for automatically
performing distributional analyses in the sense of Harris
(1954), where the ”distribution of an element will be un-
derstood as the sum of all its environments”. There are
other programs available today that gives a similar result,
e.g. AntConc (Anthony, 2016) and Wordsmith (Scott, 2017).
One downside with the former is that it – to our best knowl-
edge – is not currently designed to handle xml tags.2 Con-
sequently, it only operates on word level. One downside

1The code is found at https://github.com/PerMalm/uneek, and
the tool at https://uneek-tools.github.io/.

2However, this feature is under development: [last checked
11-01-2018] http://www.laurenceanthony.net/software/antconc/.

with the latter is that it is developed for Windows OS, and
is not compatible with all operating systems. Uneek han-
dles both txt and xml, and is available for online use by any
modern web browser without specific OS requirements.
The chief benefit of Uneek lies in its ability to operate on
annotated text. There are a number of freely available tools
for automatic annotation, e.g. Sparv, an easy to use annota-
tion pipeline for various languages (Borin et al., 2016), and
Stanford CoreNLP (Manning et al., 2014).3 Uneek may
also be used on annotations from the Berkeley FrameNet.4

Working on the level of annotations also gives the oppor-
tunity to compare texts in different languages, given that
they have at least one annotation layer in common. This
might be of interest when working with language indepen-
dent frameworks, such as UD (Nivre et al., 2016).
Uneek has three general settings for (i) set comparison op-
erations, (ii) input format, and (iii) shallow syntactic se-
quencing. These settings are presented in detail below.
There are two set comparison operations, the intersection
(A
⋂

B), which we refer to as intersectional analysis, and
the differences (A − B and B − A) which we refer to as
uniqueness differentiation. Uniqueness differentiation is
used for SUDi, or other methods where a full account of
the differences between two sets is wanted. For instance,
consider the sets A and B in example 1a–b below.

(1) a. A ={Aegon, forgave, his, goat}
b. B ={Aegon, hid, his, goat, yesterday}

A uniqueness differentiation of the sets in example 1a–b
results in the following two sets:

(2) a. A−B ={forgave}
b. B −A ={hid, yesterday}

The intersectional analysis may be used for cases where a
full account of what the two sets have in common is wanted.
It provides the following set:

3There are other tools for FN annotation. See SEMAFOR
for automatic annotation (Das et al., 2010), and FrameNet Brasil
WebTool for manual annotation (Torrent et al., 2018).

4https://framenet.icsi.berkeley.edu/fndrupal/



Figure 1: A Uneek analysis of a recipe for a sponge cake (Field A) and a description of sponge cake (Field B)

(3) A
⋂
B ={Aegon, his, goat}

Even though these operations are simple, it is helpful to
calculate them automatically. To manually perform these
tasks on large texts, is both time consuming and error prone.
The user chooses between two input formats. If txt is cho-
sen, i.e. raw text, a simple whitespace tokenizer is run. The
tokenized word forms are then given as input to the set com-
parisons. If xml format is chosen, all text nodes (typically
word forms) as well as all attributes of all tags (typically
annotations) are given as input.
A screenshot of Uneek is presented in Figure 1. In the left-
most box labeled Field A, the first input file is uploaded,
and the second file is put in the rightmost box (Field B). In
this particular case, we have set Uneek to perform an inter-
sectional analysis and a uniqueness differentiation, and up-
loaded a recipe for sponge cake (File A), and some general
description about sponge cake (File B). The input files have
been processed using the Stanford Dependency Parser.5

The result is presented in the three middle boxes. The sec-
ond rightmost box and the second leftmost box holds the
result of the uniqueness differentiation. The middle box
shows the result of the intersectional analysis.
The attributes of the xml – corresponding to annotation lay-
ers – are visualized as radio buttons above the result boxes.
These buttons control which layer is shown in the result
box. In Figure 1 we have chosen to look at dependencies,
which among other things tells us that the recipe for sponge
cake lacks nominal subjects (nsubj). This is to be expected
due to the imperative mood of recipes.
The third general setting allows for set comparisons on
shallow syntactic sequences. A shallow syntactic sequence
is here understood as a left to right organization of linguistic
units specified in the xml. The only assumption made for
the shallow syntax function is that the xml tag sentence
sets the span in which the syntax chains are constructed.

5StanfordDependencyParser from nltk.parse.stanford, v. 3.2.4.

Below, we show some syntactic sequences in various anno-
tation layers for example 1a.

(4) Text ={Aegon, forgave, his, goat}
Dep ={nsubj, root, nmod:poss, dobj}
Frame ={Forgiveness}
Frame Element ={Judge, Evaluee, [INI]}

The application of set operations on the syntactic sequences
returns all the unique syntactic configurations for File A
and File B, and all of their shared configurations. This
function is especially useful for lexico-grammatical pur-
poses. One may quite easily get a complete account of all
the combinatorial possibilities of surface forms for com-
plex constructions and frames. For instance, this function
would probably ease the lexicographic frame annotation
mode mentioned in Ruppenhofer et al. (2016, 19) by auto-
matically listing all combinations of frame elements (FEs).
To minimize visual clutter, the GUI only provides descrip-
tive statistics (raw numbers). The output data may be down-
loaded in a human and machine readable format (csv) to
ease export to statistical programs.
In sum: Uneek operates on user defined data, either raw or
annotated text, and provides formal support for intuitions
on lumping or splitting linguistic units. It may be used for
automatic distributional analysis or for the disambiguation
of polysemy presented next.

3. Semi-automatic Uniqueness
Differentiation

The rationale for SUDi and Uneek rest on the distributional
hypothesis (Harris, 1954) and set theory; see locus clas-
sicus Cantor (1915). Regarding the former, Firth (1962)
wrote, ”You shall know a word by the company it keeps”.
However, for the treatment of polysemy we assume: you
shall know the difference between two polysemous words
by the company one of them constantly rejects. In this sec-
tion, we present the details of our proposed method for pol-



ysemy disambiguation, called semi-automatic uniqueness
differentiation (SUDi).
As we indicated in the previous section, there are two rea-
sons for developing Uneek and SUDi. The first is to facili-
tate finding formal support for linguistic intuitions in com-
plex material. The second is to improve the reliability of
the distributional analysis. SUDi is a formalized and semi-
automized methodology of some of the work that linguists
often do: collect data, sort it and look for differences.
Roughly, SUDi involves five steps: (i) collect cases con-
taining the presumed polysemous form from a corpus, (ii)
sort these intuitively into two text-files (iii) process the
files using an annotation device that produces xml which
is needed in the next step, (iv) run the xml-files through
Uneek, and (v) interpret the result.
Using Uneek in step (iv) not only speeds things up, but also
simplifies reproducibility. However, to ensure validity, the
user should (among other things) delimit the specified envi-
ronment for the polysemous form in the input data. As for
any tool, garbage in results in garbage out.
If Uneek does not find unique forms for one of the files,
there is no formal support for polysemy. But, if it does, a
linguist needs to interpret the result.
Step (v) in SUDi is based on proof by contradiction us-
ing human grammaticality judgements. First, take the lin-
guistic unit that is unique in one of the files, and place it
in the context of the polysemous item in the other file. If
this switch leads to a semantic change that is deemed un-
fit in the tested domain (here marked with #), then there is
positive formal support to the intuition that the polysemous
form may be split into different frames, constructions, and
so on. Though, if the linguistic unit works fine in the other
context, then there is negative formal support for polysemy.
Being unique in one domain does not lead to its infelicity
in the other; uniqueness must be validated. Let us illustrate
this step with an example case for which we strongly expect
positive support for polysemy, namely for the verb bake.
First, we collect example sentences for bake from the
Berkeley FrameNet COOKING CREATION frame and for
bake from the APPLY HEAT frame.6 Second, we sort these
in two files. Third, we automatically process them (again
using the Stanford Dependency Parser). Fourth, we run the
files through Uneek, and interpret the unique differences
using the method in step five. The result of step four is pre-
sented in Table 1 where only some of the unique values for
the COOKING CREATION bake.v are given.

Table 1: Unique values for bake (COOKING CREATION)

ATTRIBUTES VALUES (in absolute numbers)

DEP-HEADS: auxiliary (10), predeterminer (2)
POS: modal verb (5), poss. pronoun (4)
WORDS: Sunday (2), cakes (1), Saturday (1)

Recall the uniqueness differentiation between the descrip-
tion and the recipe of sponge cake. Here we expect similar

6https://framenet.icsi.berkeley.edu/fndrupal/

results to support that the difference between the COOKING
CREATION and the APPLY HEAT frames, lies in the latter
being more recipe-like. For instance, the unique distribu-
tion with auxiliaries and modals in Table 1 is explained by
the fact that recipes are written in the imperative mood.
Next, we test some of the unique values in Table 1 against a
Berkeley FrameNet example from the APPLY HEAT frame,
i.e. Bake the soufflés for 12 minutes. These tests are pre-
sented in example 5a–d below.

(5) a. # Bake all the soufflés for 12 minutes.
b. # Bake your soufflés for 12 minutes.

c. Bake the soufflés
{

# on Saturday
for 12 minutes

}
.

d. Bake the cakes for 12 minutes.

From example 5a, we notice that all does not fit very well; it
may be hard to find recipes for multi-soufflé cooking. An-
other rare bird in the recipe genre is to state the owner of the
soufflé, as in example 5b, so is the instruction of cooking
on specific weekdays (example 5c). On the contrary, these
words work well in the COOKING CREATION frame, e.g.
Don’t worry darling! I’ll bake all your soufflés tomorrow.
However, observe that the unique form cakes (example 5d)
can occur in the APPLY HEAT frame. Hence, it is important
to manually interpret the unique units, especially with the
open word classes being what they are, i.e. open.
As a corroborative digression, we apply SUDi on the FEs in
the annotated sentences for the COOKING CREATION and
the APPLY HEAT frame. The result is shown in Table 2.

Table 2: Unique and shared frame elements for bake in the
COOKING CREATION (A) and the APPLY HEAT frame (B)

A−B A
⋂
B B −A

Ingredients, Place, Target Temperature setting,
Recipient, Time, Cook Heating instrument,
Produced food, Food Duration, Manner,

Purpose Container

Among other things, we note that the unique FEs Recipient
and Time support the observations that were based on ex-
ample 5b–c above. In conclusion: auxiliaries, possessives,
and predeterminers indicate positive formal support for pol-
ysemy. But keep in mind the scarce input (36 sentences).
Speed and reliability of automized linguistic labour must
not come at any cost, especially not at the price of validity.
One should think twice before taking the human element
out of the equation. A similar point is made in Fillmore
(1992) about the pitfall of exclusively relying on intuitive
data or empirical data, a point he makes clear by the fol-
lowing interaction between two radicalized linguists:

[. . .] the corpus linguist says to the armchair lin-
guist, ”Why should I think that what you tell me
is true?”, and the armchair linguist says to the
corpus linguist, ”Why should I think that what
you tell me is interesting?” Fillmore (1992)



Fillmore argues for the need of both these radicals, i.e.
a computer aided armchair linguist, who checks his/her
grammaticality judgements against a corpus in some orga-
nized fashion. Still, even behind results that are ever so true
and interesting, methodological problems may sometimes
lurk about unnoticed, especially in manually performed dis-
tributional analyses. When faced with such cases, it is sen-
sible to ask: why should I think that what you tell me is
based on a reliable method? A true and interesting result
does not necessarily paint the whole distributional picture.
We want to be able to say that given a specific corpus and
a specific method, we will always get the complete distri-
bution of a particular linguistic unit. We believe that Uneek
and SUDi allows linguists to make such statements.

4. Closing Remarks and Future Work
We have presented Uneek, some of its functions, and its po-
tential to mitigate some of the methodological sufferings of
linguistic labor. However, we see plenty of room for im-
provement. Here, we briefly mention two upcoming practi-
cal additions to Uneek: (i) syntactic scope, and (ii) a multi-
ple set analysis.
(i) Sometimes, while faced with complex material, one
would like to single out specific constituents of the parse
tree for analysis, e.g. the subject. We plan to add function-
ality to Uneek to automatically extract these constituents.
The user should be able to choose a constituent and get the
annotation layers for its daughter nodes. This would con-
siderably lessen the preprocessing of the input data.
(ii) We also plan to add a multiple set analys, enabling the
user to get the intersection and difference between two or
more sets. This would enable researchers and students to
get results for complex comparative linguistic studies. Such
an addition could come in handy soon, with the Multilin-
gual FrameNet (MLFN) project underway. At the end of
this project, Uneek could be used to answer some of the
general MLFN questions below.7

1. ”Are some frames universal?”

2. ”Are there regular patterns of differences based on lan-
guage families, regional groupings, etc.?”

The first question could then be answered by a multiple
set intersectional analys of the annotation layers of lan-
guage specific FrameNets. Uneek would automatically re-
turn their shared elements (frames, FEs, phrases, and so
on). The second question may be answered by a multiple
set uniqueness differentiation on sets of the FNs. Again, it
would automatically return their unique elements.
Uneek is a simple tool, but sometimes there is strength in
simplicity. Hopefully it will make the processing of com-
plex data less tedious, enabling linguists to focus on the
more interesting part of the field, i.e. coming up with ex-
planations for linguistic phenomena.

5. Acknowledgements
The work presented here has been financially supported by
the Swedish Research Council through its funding of the

7https://framenet.icsi.berkeley.edu/fndrupal/node/5549

projects South Asia as a linguistic area? Exploring big-
data methods in areal and genetic linguistics (2015–2019;
contract 421-2014-969) and Swe-Clarin (2014–2018; con-
tract 821-2013-2003), the Swedish Foundation for Inter-
national Cooperation in Research and Higher Education
(STINT) through its Swedish-Brazilian research collabora-
tion program (2014–2019; contract BR2014-5860), and the
University of Gothenburg, its Faculty of Arts and its De-
partment of Swedish.

6. Bibliographical References
Anthony, L. (2016). AntConc (version 3.4.4)[computer

software]. Available at http://www. laurenceanthony.net
Tokyo, Japan: Waseda University.

Borin, L., Forsberg, M., Hammarstedt, M., Rosén, D.,
Schäfer, R., and Schumacher, A. (2016). Sparv:
Språkbanken’s corpus annotation pipeline infrastructure.
In SLTC 2016. The Sixth Swedish Language Technology
Conference, Umeå University, 17–18 November, 2016.

Cantor, G. (1915). Contributions to the Founding of the
Theory of Transfinite Numbers. Number 1. Open Court
Publishing Company.

Das, D., Schneider, N., Chen, D., and Smith, N. A. (2010).
SEMAFOR 1.0: A Probabilistic Frame-Semantic Parser.
Language Technologies Institute, School of Computer
Science, Carnegie Mellon University.

Drouin, P. (2003). Term extraction using non-technical
corpora as a point of leverage. Terminology, 9(1):99–
115.

Fillmore, C. J. (1992). ”Corpus linguistics” vs. ”computer-
aided armchair linguistics”. In Directions in Corpus Lin-
guistics: Proceedings from a 1991 Nobel Symposium on
Corpus Linguistics, Stockholm. Mouton de Gruyter.

Firth, J. R. (1962). A Synopsis of Linguistic Theory, 1930-
1955. Basil Blackwell, Oxford, [1957] edition.

Harris, Z. S. (1954). Distributional Structure. Word, 10(2-
3):146–162.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The Stanford
CoreNLP Natural Language Processing Toolkit. In Pro-
ceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 55–60.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Ha-
jic, J., Manning, C. D., McDonald, R. T., Petrov, S.,
Pyysalo, S., Silveira, N., et al. (2016). Universal Depen-
dencies v1: A Multilingual Treebank Collection. In Pro-
ceedings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016).

Ruppenhofer, J., Ellsworth, M., Petruck, M. R., Johnson,
C. R., Baker, C. F., and Scheffczyk, J. (2016). FrameNet
II: Extended Theory and Practice.

Scott, M. (2017). WordSmith Tools Help. http://www.
lexically.net/downloads/version7/HTML/overview.html.

Torrent, T. T., da Silva Matos, E. E., Sigiliano, N. S.,
da Costa, A. D., and de Almeida, V. G. (2018). A flexi-
ble tool for an enriched FrameNet: the FrameNet Brasil
Webtool. submitted for publication.

http://www.lexically.net/downloads/version7/HTML/overview.html
http://www.lexically.net/downloads/version7/HTML/overview.html

	Introduction
	Uneek
	Semi-automatic Uniqueness Differentiation
	Closing Remarks and Future Work
	Acknowledgements
	Bibliographical References

