
A FrameNet-based Approach for Annotating Natural Language Descriptions

of Software Requirements

Waad Alhoshan, Riza Batista-Navarro, Liping Zhao

School of Computer Science, University of Manchester, United Kingdom

waad.alhoshan@postgrad.manchester.ac.uk

{riza.batista, liping.zhao}@manchester.ac.uk

Abstract
As most software requirements are written in natural language, they are unstructured and do not adhere to any formalism. Processing
them automatically—within the context of software requirements engineering tasks—thus becomes difficult for machines. As a step
towards adding structure to requirements documents, we exploited frames in FrameNet and applied them to the semantic annotation of
software descriptions. This was carried out through an approach based on automated lexical unit matching, manual validation and
harmonisation. As a result, we produced a novel corpus of requirements documents containing software descriptions which have been
assigned a total of 242 unique semantic frames overall. Our evaluation of the resulting annotations shows substantial agreement
between our two annotators, encouraging us to pursue finer-grained semantic annotation as part of future work.

 Keywords: Semantic Frames, FrameNet, Corpus Annotation, Software Requirements, Requirements Engineering

1. Introduction

Software requirements play a pivotal role in all system
design phases. Requirements are generally written in
natural language, and therefore are unstructured (Ferrari et
al., 2017a). This however presents a challenge to
Requirements Engineering (RE) tasks, e.g. requirements
analysis, which often necessitate the organisation and
management of requirements in a systematic manner
(Dick et al, 2017). While certain RE tasks (e.g.,
modelling) could benefit from automated analysis, this
can only be facilitated if some structure is applied to the
otherwise unstructured natural language requirements
contained in software descriptions (Ferrari et al., 2017b).

One way by which we can add structure to software
descriptions written in natural language is by attaching
machine-readable semantic metadata that captures
meaning. In documents from the general and scientific
domains, this often corresponds to named entities, e.g.,
proper names of persons, places, diseases or chemical
compounds. Software descriptions however do not allude
to such proper names as often and instead mention generic
if not abstract concepts (e.g., account creation, file
deletion) and the participants involved (e.g., user, system).
As shown in early work by Belkhouche and Kozma
(1993) and Rolland and Priox (1992), capturing meaning
contained in requirements can be approached by using
semantic frames: coherent structured representations of
concepts (Petruck, 1997). These representations are based
on the theory of frame semantics proposed by Fillmore
(1977) whose work formed the basis of FrameNet, an
online computational lexicon that catalogues detailed
information on semantic frames1 (Baker et al., 1998). For
every frame it contains, FrameNet specifies the following:
frame title, definition, frame elements (i.e., participants)
and lexical units, i.e., words that evoke the frame. The
concept of creation, for example, is encoded in FrameNet
as a frame entitled Creating, with frame elements
pertaining to Creator, Created_entity and Beneficiary
(among many others). Importantly, lexical units that
signify the concept is also provided, each of which is

1 https://framenet.icsi.berkeley.edu

represented as a combination of their lemmatised form
and part-of-speech (POS) tag (e.g., assemble.v, create.v
where v stands for verb). Such a frame can then be applied
on a piece of text (such as in Example 1) to represent, in a
structured manner, the creation idea that is being
conveyed. Containing over 1,200 such frames, FrameNet
has become an invaluable resource to the NLP research
community.

Example 1:
[The system] Creator [generates] Creating_lexical unit
[records of user activities] Created_entity [each time]
Frequency [the user logs into the system] Cause.

Recent studies in RE have explored the application of
FrameNet frames to software requirements acquisition
and analysis. For example, Jha and Mahmoud (2017)
employed semantic frames (automatically extracted by the
SEMAFOR semantic role labeller2) as features in training
machine learning-based models for categorising user
reviews of mobile applications. Meanwhile, Kundi and
Chitchyan (2017) proposed a technique for gathering
requirements that employed FrameNet frames as the basis
of linguistic patterns for generating use cases at the early
stages of RE. They specifically made use of the
Agriculture frame to demonstrate their approach.

We consider FrameNet as a rich repository of semantic
metadata that can be added to requirements documents in
order to add structure to them. In this work, we seek to
employ FrameNet as the basis of a scheme for capturing
the meaning of software descriptions. To this end, we
adopt FrameNet semantic frames in annotating software
requirements in a corpus of documents written in natural
language. To the best of our knowledge, our work is the
first attempt to investigate FrameNet as a means for
annotating meaning within requirements documents. In
this way, we are enriching them with semantic metadata
and hence incorporating structure into them. As a result,
we have produced and made publicly available a resource
for the perusal of other members of the research

2 http://www.cs.cmu.edu/~ark/SEMAFOR/

https://paperpile.com/c/0gDpyB/H32Q
https://paperpile.com/c/0gDpyB/H32Q
https://paperpile.com/c/0gDpyB/H32Q
https://paperpile.com/c/0gDpyB/Ga9X+sFKU
https://paperpile.com/c/0gDpyB/6vuZ
https://paperpile.com/c/0gDpyB/3ZBd
https://paperpile.com/c/0gDpyB/3ZBd
https://paperpile.com/c/0gDpyB/3ZBd
https://paperpile.com/c/0gDpyB/3ZBd
https://paperpile.com/c/0gDpyB/s3K1
https://paperpile.com/c/0gDpyB/s3K1
https://paperpile.com/c/0gDpyB/s3K1
https://framenet.icsi.berkeley.edu/
https://paperpile.com/c/0gDpyB/PrGm
https://paperpile.com/c/0gDpyB/liK6
http://www.cs.cmu.edu/~ark/SEMAFOR/

community: the FrameNet-annotated FN-REQ3 corpus of
natural language requirements documents.

The rest of this paper is organised as follows. Section 2
describes our methods for collecting software
requirements documents and annotating them based on the
semantic frames contained in FrameNet. In Section 3, we
present and analyse results of our annotation. Lastly, we
present our conclusions and plans for future work in
Section 4.

2. Methodology

In this section, we present the methods we carried out in
order to construct a corpus of documents containing
sentences of software requirements, and to subsequently
annotate them according to FrameNet.

2.1 Document Selection

Our goal is to gather a document set consisting of
different types of software requirements. As a preliminary
step, we formed a Google search query containing
keywords such as "software description", “natural
language requirements" and "software requirements
specification". Furthermore, we employed snowball
sampling and found additional requirements from various
sources such as web blogs, research articles (together with
their corresponding datasets), lecture materials and
industrial/commercial documents. This step resulted in the
collection of 34 requirements documents varying in
length. The NLTK tool4 for sentence boundary detection
was then applied on the 34 documents. After manually
verifying the results, a total of 1,148 sentences5 were
obtained (corresponding to 21,012 tokens).

2.2 Annotation Procedure

The annotation was carried out in a semi-automatic
manner. This was facilitated by the two main steps
described as follows.

2.2.1 Evoking Frames by Lexical Unit Matching

With the intention of making the annotation process more
efficient, we developed a simple method for automatically
matching words in the software descriptions in our corpus
against lexical units contained in FrameNet, in order to
evoke candidate semantic frames. The tokens contained in
the requirements documents were lemmatised and
assigned part-of-speech (POS) tags using NLTK. For
every description, we attempt to match each token
(together with its lemma and POS tag) against lexical
units in FrameNet, via the application programming
interface (API) available in NLTK6. We note that only
particular types of FrameNet lexical units were considered
by this matching method, namely: all verbs and any
expressions pertaining to time (e.g., "beforehand"),
condition (e.g., "in case", "otherwise"), additional action

3 Read as "fine req"
4 http://www.nltk.org/api/nltk.html
5 Identified based on sentence delimiters such as the full stop.

Not all of these however are sentences in the strict sense; some

are phrases. They all however pertain to software descriptions,

thus we use "descriptions" rather than "sentences" in the rest of

this paper.
6 http://www.nltk.org/howto/framenet.html

(e.g., "further), inclusion (e.g., "inclusive"), exclusion
(e.g., "excluding"), contradiction (e.g., "nevertheless"),
causation (e.g., "because of") and purpose (e.g., "in
order"). The selection of these types was informed by our
observations on the linguistic styles often used in writing
software requirements. Through this process, we were
able to evoke candidate semantic frames that denote the
meaning of the requirements in our documents.

2.2.2 Validation

Deciding which FrameNet semantic frames capture the
meaning expressed in software descriptions was
performed manually in order to maximise accuracy. For
this task, we employed two annotators. The first annotator
(Annotator A) is a requirements engineer with five years
of experience in the IT industry. The second annotator
(Annotator B) is one of the authors of this paper and is a
PhD candidate whose study is focussed on the use of NLP
techniques to support RE tasks.

Provided with candidate frames obtained in the previous
step, the annotators were asked to confirm whether they
capture the meaning of a given software description or
not. This validation process was carried out in accordance
with the guidelines we developed which drew inspiration
from the FrameNet annotation scheme proposed by
(Baker, 2017). Over a four-week period, both annotators
were trained in applying these guidelines on the
annotation of a set of software descriptions from
documents other than those in our corpus. Afterwards, the
entire corpus of 34 documents—together with the
candidate semantic frames retrieved in the previous step—
was presented to each of Annotators A and B for
annotation. We provide Table 1 to show an example of the
details that are presented to an annotator and the kind of
judgement that he/she is expected to provide. At the top
row of the table is a sample software description. The first
column (LU) lists the lexical units matched by the method
described in Section 2.2.1. The second and third columns
(Start and End) indicate the location of the corresponding
lexical unit in terms of character offsets—useful
information in cases where a lexical unit appears multiple
times within a description. The fourth column (Retrieved
Frames) lists the titles of the frames linked with the
matched lexical units and are thus considered as candidate
frames for annotating the given description. The annotator
indicates in the last column his/her judgement on whether
a candidate frame applies to the software description
(rating = 1) or not (rating = 0). Both annotators completed
this task for all 1,148 software descriptions in our corpus.

http://www.nltk.org/api/nltk.html
http://www.nltk.org/howto/framenet.html
https://paperpile.com/c/0gDpyB/JmJq

Table 1. A sample software description from the corpus.
An annotator is presented with the automatically matched
lexical units, their character offset locations and the titles
of the frames linked with them. He/she then indicates
whether the frames apply to the requirements (rating = 1)
or not (rating = 0). (NB: The second instance of
"generate" is also presented to the annotator but excluded
here for brevity.)

3. Results and Discussion

In this section, we discuss the results of the methodology
described above by providing details on inter-annotator
agreement and reasons behind annotator discrepancies.
We then describe additional steps that were taken in order
to prepare the corpus for publication. After presenting
attributes of the resulting corpus in terms of annotation
frequencies, we discuss a few suggestions on how our
proposed annotation method can be useful to members of
the research community within the context of RE tasks.

3.1 Inter-annotator Agreement

In order to assess the consistency of annotations between
our two annotators, we evaluated inter-annotator
agreement based on Cohen's kappa coefficient (McHugh,
2012) as well as the harmonic mean of recall and
precision, i.e., F-score. We obtained "substantial"
agreement7 according to Cohen's kappa (72.81%).
Furthermore, after determining the number of true
positives, false positives and false negatives (by treating
the annotations from Annotator B as gold standard and
those from Annotator A as response) and micro-averaging
over all the documents in our corpus, we obtained an F-
score of 80.89%. These results indicate that there is a
more than satisfactory level of consistency between our
two annotators, implying that their annotations can be
considered as highly reliable.

Nevertheless, we investigated the reasons of discrepancy
between our two annotators. We found that these are
mostly due to close semantic relationships between certain
semantic frames. FrameNet, for example, contains a
Creating and an Intentionally_create frame, both of which
would be retrieved by our automated lexical unit matching
method—and thus presented to an annotator—for a
description containing the word "generate" as a verb. As
these two frames have similar lexical units and are linked

7 As stipulated in Landis and Koch (1977)

by hyponymy (where Intentionally_create has Creating as
its parent frame), Annotator A could select one frame
while Annotator B might select the other (or both, as
shown in the example in Table 2). Aiming to produce
annotations that are of the highest quality as possible, we
resolved these discrepancies, as described in the next
section, prior to publishing the annotated corpus.

Table 2. A case where Annotator A's judgements on
which frames apply to the the word "generate" (in the
software description in Table 1), are in disagreement with
those of Annotator B. This can be attributed to the
hyponymic relationship between the Intentionally_create
and Creating frames. The last column is for recording the
results of harmonisation (H).

3.2 Preparation of the Final Corpus

In order to produce the final set of annotations, we
harmonised the judgements provided by our two
annotators, addressing the primary cause of discrepancies
discussed in the previous section. From the set of
semantic frames for which the annotators were in
disagreement, the following instances were revisited by
Annotator B: (1) where the FrameNet frame that she
selected as being most relevant to a description is
semantically related to the one selected by Annotator A;
and (2) where multiple—presumably semantically
related—frames were selected for a word in a description.
Annotator B reviewed information pertinent to the frames
in question, e.g., the definitions and descriptions provided
in FrameNet, examples of annotations in the FrameNet
corpus8, as well as the judgements provided by Annotator
A. In cases where she is convinced that Annotator A's
judgements were more correct, she modified her own
annotations; otherwise, she kept her original judgements.
She also ensured that only one frame is assigned to a
given word (i.e., the matched lexical unit), choosing the
one that best captures the meaning of a description (as she
understands it), while also reviewing the definitions and
examples that are available in FrameNet. The outcome of
this process formed the basis of the final set of
annotations in our corpus.

3.3 Frequency Analysis

After harmonisation of manually provided judgements, we
performed frequency analysis over the final set of
annotations, the results of which are presented in Table 3.
Alongside these we also provide the frequency of
annotations resulting from our automated lexical unit
matching method, as the reader might be interested in
seeing how much improvement was obtained after manual
validation and harmonisation. As one can expect, the
automated method for matching lexical units introduced a
considerable amount of noise. Firstly, the matching of

8 Refer to Language Resource Reference

https://paperpile.com/c/0gDpyB/0KOq
https://paperpile.com/c/0gDpyB/0KOq

tokens (with their lemmatised forms and POS tags)
against FrameNet lexical units does not have perfect
accuracy as the POS tagger that we utilised was assigning
the wrong POS tag to tokens in a few cases. Secondly, for
a given word from a description, e.g., "generate", our
method would have retrieved all frames that are
associated with the "generate" lexical unit regardless of
the sense (e.g., Intentionally_create, Giving_birth,
Creating, Cause_to_start). This would have resulted in a
significant number of false positives, i.e., frames that are
irrelevant to a given software description. These issues
were however rectified during manual validation and
subsequently, during harmonisation.

In our final set of annotations, only frames with rating = 1
(after manual validation and harmonisation) were
included. We can observe from Table 3 that out of the 408
semantic frames retrieved through automated lexical unit
matching, 166 (40.7%) were eliminated during manual
validation and harmonisation, and thus were not included
in the final set. There was also a significant drop in terms
of the average number of frames assigned to each
software description (from 8.82 per description to only
2.21).

Table 3. Frequency analysis over the final set of
annotations in the FN-REQ corpus. For comparison, we
also provide the frequency of annotations obtained
through automated lexical unit matching (prior to manual
validation and harmonisation).

Our corpus can be considered as densely annotated, with
semantic frames assigned to 88.4% of the total number of
descriptions (1,015 out of 1,148). Annotations were
encoded in a standoff manner, i.e., separately from the
documents that were annotated. While the requirements
documents were stored following an extended version of
the schema proposed by (Ferrari et al., 2017), the
annotations were encoded according to the FrameNet
format (Baker, 2017).

3.4 Potential Applications

The utilisation of frames in FrameNet to attach semantic
metadata to software descriptions—as demonstrated in
this work—could potentially facilitate the (partial)
automation of certain requirements engineering tasks. For
instance, similarities between requirements statements
written in natural language can be automatically detected
or measured on the basis of the semantic frames assigned
to each of them. This in turn can enable traceability, i.e.,
establishing relationships or groupings between
requirements and effectively, the software systems they
pertain to (Zogaan et al., 2017). Additionally, attaching
semantic metadata derived from FrameNet to

requirements statements makes them machine-readable
and hence more searchable. A software engineer
developing requirements for a new system can thus find
existing requirements of relevance in a more efficient and
systematic manner. In this way, the reusability of existing
requirements can be enhanced, hence avoiding
unnecessary duplication of efforts (Alonso-Rorís et al.,
2016).

4. Conclusion and Future Work

In this work, we demonstrated how semantic frames can
be applied to the annotation of software descriptions.
Along the way, we produced FN-REQ corpus, which we
have made publicly available, together with other
associated resources (e.g., annotation guidelines, the script
that automates matching of FrameNet lexical units), at
https://data.mendeley.com/datasets/s7gcp54wbv/1 .

As we were progressing with the manual annotation

process described in this work, both annotators observed

that there are words in some descriptions which to them

clearly pertain to software requirements, but however

cannot be assigned any of the frames in FrameNet. For

example, it is now typical for software requirements to

mention the process of logging into a system, often

signified by the verb "log" (as in Example 1 in Section 1).

However, none of the frames in the most recent version of

FrameNet conveys this concept. This is not a surprise as

FrameNet is a general vocabulary and was not designed to

cater to specific domains. However, for our purposes of

supporting requirements engineering tasks as part of

downstream applications, it is worth investigating how

many of such requirements in our corpus are currently not

covered by FrameNet, in order to assess if there is scope

for extending it through the proposal of new additional

frames. This is part of our ongoing work. Furthermore, we

are in the process of extending our FN-REQ corpus with

more requirements documents, while we also carry out

finer-grained annotation of software descriptions by

labelling frame elements as well. In our future work, we

shall exploit the corpus in the context of RE tasks,

specifically in detecting traceability and reusability of

software requirements.

Acknowledgement
We thank Mohammed Homaid for the time and effort he
spent on the annotation of our corpus. We are also grateful
for our reviewers whose comments and feedback helped
improve the paper. Waad Alhoshan’s PhD is sponsored by
the Al-Imam Muhammad Ibn Saud University..

References
Alonso-Rorís, V. M., Álvarez-Sabucedo, L., Santos-Gago,

J. M., & Ramos‐Merino, M. (2016). Towards a cost-
effective and reusable traceability system. A
semantic approach. Computers in Industry, (83):1-
11).

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998,

August). The berkeley framenet project.

In Proceedings of the 17th international conference

on Computational linguistics-Volume 1 (pp. 86-90).

Association for Computational Linguistics.

 Automated lexical

unit matching

Final set of

annotations

Total number of unique

frames

408 242

Total number of unique

lexical units

372 340

Average number of frames

per software description
8.82 2.21

https://paperpile.com/c/0gDpyB/Qf3f
https://paperpile.com/c/0gDpyB/Qf3f
https://paperpile.com/c/0gDpyB/Qf3f
https://data.mendeley.com/datasets/s7gcp54wbv/1

Baker, C. F. (2017). FrameNet: Frame Semantic

Annotation in Practice. In Handbook of Linguistic

Annotation (pp. 771-811). Springer, Dordrecht.

Belkhouche, B., & Kozma, J. (1993). Semantic case

analysis of informal requirements. In Proceedings of

the 4th Workshop on the Next Generation of CASE

Tools (pp. 163-181).

Hull, E., Jackson, K., & Dick, J. (2010). Management

Aspects of Requirements Engineering.

In Requirements Engineering (pp. 159-180).

Springer London.

Ferrari, A., DellOrletta, F., Esuli, A., Gervasi, V., &

Gnesi, S. (2017a). Natural Language Requirements

Processing: A 4D Vision. IEEE Software, 34(6), (pp.

28-35), IEEE.

Ferrari, A., Spagnolo, G. O., & Gnesi, S. (2017). PURE:

A Dataset of Public Requirements Documents.

In Requirements Engineering Conference (RE), 2017

IEEE 25th International (pp. 502-505). IEEE.

Fillmore, C. J. (1977). Scenes-and-frames

semantics. Linguistic structures processing, 59, 55-

88.

Jha, N., & Mahmoud, A. (2017). Mining user

requirements from application store reviews using

frame semantics. In International Working

Conference on Requirements Engineering:

Foundation for Software Quality(pp. 273-287).

Springer, Cham.

Kundi, M., & Chitchyan, R. (2017). Use Case Elicitation

with FrameNet Frames. In 2017 IEEE 25th

International Requirements Engineering Conference

Workshops (REW) (pp. 224-231). IEEE.

McHugh, M. L. (2012). Interrater reliability: the kappa

statistic. Biochemia Medica: Casopis Hrvatskoga

Drustva Medicinskih Biokemicara / HDMB, (pp.

276-282).

Petruck, M. R. L. (1997). Frame semantics. Handbook of

Pragmatics (Vol. 12, pp. 1-13). Amsterdam: John

Benjamins Publishing Company.

Rolland, C., & Proix, C. (1992). A natural language

approach for Requirements Engineering. In

Advanced Information Systems Engineering (pp.

257-277). Springer, Berlin, Heidelberg.

Landis, J. R., & Koch, G. G. (1977). An application of

hierarchical kappa-type statistics in the assessment

of majority agreement among multiple observers.

Biometrics, (pp. 363-374).

Zogaan, W., Sharma, P., Mirahkorli, M., & Arnaoudova,

V. (2017). Datasets from Fifteen Years of

Automated Requirements Traceability Research:

Current State, Characteristics, and Quality. In

Proceedings of the 25th International Requirements

Engineering Conference (pp. 110-121). IEEE.

Language Resource Reference

FrameNet. (2017). The FrameNet project, distributed via

International Computer Science Institute in

Berkeley, 1.7, URL: https://goo.gl/Nbuqvd

https://goo.gl/Nbuqvd

