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Abstract
This paper is concerned with the question of whether we can predict the future impact of a paper based on the text of the paper. We
create a corpus of papers in computational linguistics, and we create gold standard impact annotations by using their Google Scholar
citation counts. We use supervised classification approaches to automatically predict impact of the papers. Our results when using very
simple features show some success, but they also show that the classifiers suffer from class imbalance problems.
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1. Introduction
This paper is concerned with the question whether we can
predict the future impact of a paper based on the text of
the paper. In other words, are there textual characteristics
that increase the impact of a paper? We define the impact
of a paper as its citation count. While this question sounds
somewhat unrealistic, it does make sense when looked at
from the angle that properly advertising one’s work should
have a positive effect on its reception. A well written paper
cannot succeed if there is no academic content. But some
papers that have the content, but package it suboptimally
may not get as much attention as they deserve. In this vein,
our question can be rephrased as: Which textual character-
istics do we need to adapt in order to produce a successful
paper?
In our work, we investigate papers from the major confer-
ences and journals in computational linguistics. We create a
corpus of such papers on the topics of parsing and machine
translation, and we create a gold standard of their impact by
using their Google Scholar citation counts. We then sepa-
rate the papers into three classes: low impact, high impact,
and highest impact. We use supervised classification ap-
proaches to automatically predict impact of the papers. Our
results when using very simple features show some success,
especially when we use the full papers rather than just the
abstracts, but they also show that the classifiers suffer from
problems; they have a tendency to group all papers into the
low impact class, which is the majority class.
There are two possible reasons for the behavior of the clas-
sifiers: One possibility is that the features we use are not
predictive enough. The second possibility concerns the
problem of class imbalance since the highest impact setting
has very few examples. Depending on which of the rea-
sons holds, we need to address the problem by either fea-
ture engineering or data sampling. To test the two hypothe-
ses, We removed stopwords from the content, both abstracts
and whole texts. We also experimented with both down-
sampling and up-sampling. Random down-sampling of the
low and high citation classes yields more balanced perfor-
mance across the classes but results in a reduced overall

accuracy due to the small amount of data used. This dis-
crepancy is even more pronounced when only abstracts are
used. Synthetic minority up-sampling techniques produced
results very similar to the previous experiments.
The paper is structured as follows: We present related work
in section 2., followed by a description of the corpus in sec-
tion 3.. Section 4. presents the experiments and results with
section 4.5. presenting an analysis of the features. We con-
clude with areas of future research in section 5..

2. Related Work
Traditional methods to determine the impact of a publi-
cation have heavily focused on citation counts. However,
there are many methodological issues to consider as well
as many caveats in these results. Furthermore, such metrics
are often only retroactively obtainable and cannot indicate
future impact. This has led to more focused work exam-
ining whether different sorts of features can be utilized to
gauge the future impact of a publication. We are aware
that this limits the objectivity of our gold standard (see sec-
tion 3.), but since we are interested in automatic approaches
to predicting future impact based on text, we assume that a
switch in determining the gold standard will not have im-
pact the usability of our methodology.

2.1. Citation Count Impact
Rankings based on citation counts are often used to demon-
strate the “importance” of a publication. This is often per-
formed by simply counting the number of times a publica-
tion (or a group of citations) has been cited by a different set
of publications. More complex measures aim to account for
types of variation and instead focus on the average number
of citations on a set of papers and compensate for the length
of time publication has been in existence (i.e. weighting
publications having existed for three years against those for
fifty years). Such methodology does yield a plethora of
information. Adams et al. (2005) use citation probability
metrics on the the Institute for Scientific Information to dis-
cover certain trends including: Higher ranked universities’
citation sharing, mutual cross-over between scientific fields

Y. Chen et al.: Towards Determining Textual Characteristics of High and Low Impact Publications 1

Proceedings of the LREC 2018 “Workshop on Computational Impact Detection from Text Data”,
Andreas Witt, Jana Diesner, Georg Rehm (eds.), 08 May 2018, Miyazaki, Japan



in citations, and that there is a lag of about three years for
the diffusion of information.
However, although informative and easy to access in terms
of information, relying strictly on citation counts and prob-
ability metrics is often misleading and prone to inherent
bias based on the given criteria. Meho and Yang (2007)
compile a corpus created by fusing different citation met-
ric systems, such as WoS and Scopus, to demonstrate that
a selected metric significantly impacts how a publication
can be ranked based on citation counts as different metrics
exclude different fields, languages, or publication types.
Another approach taken is correlating the number of cita-
tions with the impact factor of the journal of publication
to examine the interaction of the two. Levitt and Thelwall
(2011) noted that standard citation metrics are not necessar-
ily the best indicator of impact for the subject of economics,
as there is also a strong correlation with the journal of pub-
lication. This suggests that the forum of publication is also
relevant to impact, not just the number of citations and sub-
stance of the article.

2.2. Predictive Impact
Traditional methods of impact assessment can only be per-
formed after a reasonable amount of time has passed to al-
low for the dissemination of the publication into a research
community. Much of this work focuses on the use of ci-
tation counts to determine impact; however, this is rather
limited in terms of future predictability. Thus, approaches
utilizing more content for impact prediction have been an
area of more recent research.
Ibáñez et al. (2009) examined which types of classifiers and
features can be used to predict future citation frequency.
They found that certain classifiers, such as Naive Bayes,
performed better but also that certain tokens can actually
be indicative of a publications of future citation frequency.
Dietz et al. (2007) use an LDA-based approach that at-
tempts to detect topical influence of cited documents on the
citing document by linking individual references and word
distributions on citing papers.
Other recent work has looked at how citation impact can be
predicted at a publication’s release. This has become rele-
vant due to the electronic publication of many articles upon
release. Brody et al. (2006) found a correlation between
downloads of arXiv articles in certain scientific fields and
their citation and impact. They further argue that down-
loads can also show a usage impact that is not correlated to
citations and that as more databases become available, such
impact may only increase.
With the advent of social media, the announcement of the
existence of new publications is disseminated through these
mediums. This was explored by Eysenbach (2011) who
noted that Twitter can help predict high impact publica-
tions by the frequency a publication is tweeted within the
first few days of publication, suggesting that non-traditional
metrics can be used to immediately identify impact.

3. Impact Corpus
We are interested in whether the content of a paper can give
us information on whether this paper will have an impact

Year Total Papers Parsing Machine Translation
2007 187 83 104
2008 279 108 171
2009 270 135 135
2010 306 130 176
2011 191 67 124
2012 225 81 144

Table 1: Distribution of papers across years

on the field. Since we did not find any corpus that would
allow us to investigate this question, we created our corpus.
The corpus was sampled from leading publications in the
field of Computational Linguistics, and more specifically
from major conferences and journals that are incorporated
into the ACL Anthology1. Specifically, we only took pa-
pers from the Computational Linguistics journal, ACL,
NAACL, EACL and EMNLP due to their content and
stylistic similarities. Since we need to access the text, us-
ing the PDFs from the anthology directly is of limited use.
Thus, we used the texts available from the ACL Anthology
Network2 for the textual basis. This corpus was created by
using OCR to convert the PDFs into text, with additional
post-processing using both scripts and manual labor (Radev
et al., 2009; Radev et al., 2013). We decided to concentrate
on two major topics of computational linguistics, parsing
and machine translation. To extract papers on those top-
ics, all texts that use the words “parse” or “parsing” (case
invariant) in their title were extracted for the parsing cate-
gory, and all papers using the words “translate”, or “transla-
tion” in the title were extracted for the machine translation
category3.
Since we define the impact of paper in terms of the number
of citations a paper has received, we need to allow sufficient
time between publication of the original paper and of the
papers citing it. Thus, we chose a window of 5 to 10 years
ago, i.e., we consider papers published between 2007 and
2012. Table 1 displays the distribution of papers across the
years for which we collected data.
Citation counts were then collected for each of these papers
using Google Scholar4. We extracted the citation counts
manually, and we list the sum of all citations if a paper is
listed more than once on Google Scholar.
Figure 1 shows the distribution of citation counts in the two
topics. Based on this distribution, we established three cat-
egories: a low citation count (0-29 citations), a high cita-
tion count (30-119), and an extremely high citation count
(>120). The graphs in Figure 1 show that this split re-
sults in a severely imbalanced data set, which will make the
automatic prediction of impact very challenging. Citation
counts follow a rough Zipfian distribution: 948 papers fall
into the low-count bin, 424 papers fall into the high-count

1http://aclweb.org/anthology/
2http://tangra.cs.yale.edu/newaan/
3A third category corresponding to stance detection/sentiment

analysis was also collected. However, the resulting collection of
papers was too small to be of use.

4https://scholar.google.com/
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Figure 1: Citation class distribution with 3 classes

Topic Low High Highest
Parsing 381 181 42
MT 567 243 44

Table 2: Class distribution by topic

bin and 86 papers fall into the final highest-count bin. Ta-
ble 2 shows the distribution across the two topics.
We are looking into an alternative classification using five
citation classes as a way to mitigate the imbalance in the
data. The classes consist of a no impact class for papers
receiving 0 citations, a low class for papers with 1-15 cita-
tions, a moderate class for papers with 16-45, a high class
for papers with 46-125 and a very high class for papers with
more than 125 citations. The number of papers for this 5-
class system are shown in figure 2. This graph shows that
we obtain a less skewed data set.

4. Experiments
Our interest is whether we can predict a paper’s future im-
pact based on characteristics in the paper. We conducted
a series of experiments to investigate how well the impact
class can be predicted based on characteristics of the text

Figure 2: The 5 class split

in papers. For these experiments, we use a simple bag of
words approach. All of the experiments presented here are
based on the skewed 3-class data split.
We experiment with two types of texts: paper abstracts
and full texts. This will ultimately answer the questions
whether we can determine the impact of a paper based
solely on the abstract and whether the abstract is as infor-
mative as the full paper. We also experiment with an ad-
ditional pre-processing step: removing the stopwords. The
list of stopwords is obtained from NLTK (Bird et al., 2009).

4.1. Extracting Abstracts
We extract abstracts automatically from the corpus using
regular expressions. The regular expression will take the
texts between the word “Abstract” and the word “Introduc-
tion”. As some of the papers do not follow this pattern,
their abstracts were not extracted. For these 70 papers, the
abstracts could not be identified successfully, therefore we
extracted those abstracts manually.

4.2. Experimental Setup
To create the training, development and test datasets used,
we split the corpus per topic, i.e., we created separate train-
ing, development, and test sets for the parsing and the MT
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Parsing Machine Translation
Classifier # features Accuracy F-score # features Accuracy F-score
Random Forest All 60.61 45.74 All 67.82 56.87

10 000 60.61 46.18 3 000 68.97 59.15
Gradient Boost Trees All 60.60 46.18 All 65.52 56.87

5 000 60.60 48.91 10 000 67.82 58.89
Adaptive Boosting All 60.60 45.74 All 66.67 58.89

4 000 60.60 45.74 2 000 67.82 61.79
SVM All 62.12 53.67 All 68.97 65.66

10 000 62.12 57.22 10 000 68.97 65.66

Table 3: Results for both topics using only the papers’ abstracts (boldface: majority classification)

domain. Out of every 10 papers, we randomly selected 1
paper for the development dataset, 1 paper for the test data,
and the remaining 8 papers for the training set.
For the features, we extracted word unigram, bigram, and
trigram counts from the texts of the training set. In the ex-
periments shown in section 4.3., only the abstract is used
for feature extraction while the experiments in section 4.4.
use the entire text including the abstract. Then, we per-
formed feature selection via a filter method, using both �

2-
goodness of fit and Mutual Information. The features with
the highest scores below a specified count threshold are
kept while all others are removed. We only report results
using Mutual Information. �2 tends to result in similar, oc-
casionally somewhat lower performance.
To gauge how sensitive performance is to specific machine
learning approaches, we experiment with a variety of clas-
sification algorithms: Random Forest, Support Vector Ma-
chines (SVM), Adaptive Boosting, and Gradient Boost us-
ing shallow decision trees. We use the implementation in
scikit-learn (Pedregosa et al., 2011). Each of the
classifiers is trained using an exhaustive search over hyper-
parameter values.

4.3. Classifying Abstracts
The results for both topics are shown in table 3. The table
shows several interesting results: First, it is clear from look-
ing at accuracy that word n-grams do not provide enough
information to determine impact of papers reliably. Addi-
tionally, the F-scores are considerably lower than the ac-
curacies. This difference gives us an indication one prob-
lem: Many of the results are based on majority classifica-
tion, i.e., the machine learner exclusively chooses the class
that constitutes the majority class in the training data. Such
cases are indicated in bold in the table. This shows that
most of the classifiers prefer majority classification. Fea-
ture selection, which has been shown to have the potential
of being useful in problems with class imbalance (Kübler et
al., 2017), does not have any effect on accuracy in parsing.
For the machine translation topic, it has a positive effect on
all ensemble methods but does not improve the accuracy of
SVMs. We will return to the question of majority classifica-
tion below and have a closer look at performance per class.
As we described above, we repeated the experiments after
having removed the stopwords. For abstract only features,
this pre-processing step did not help with either accuracy or
F-score.

A second trend that is obvious from table 3 is that predicting
impact for the machine translation topic is more successful
than for parsing: The highest accuracy reaches almost 70%
while for parsing, the highest accuracy is around 62%. This
cannot be explained by the imbalance in the data since ma-
chine translation has a higher skewing factor (the majority
class is 1.98 times more likely than the other two classes
combined) than parsing (1.71 times). Especially for SVMs,
the F-scores are close to the accuracies, which means that
the classifier goes beyond majority classification.
Returning to the issue of majority classification, table 4
shows the results in terms of precision and recall for se-
lected experiments. These results show how serious the is-
sue is: for parsing, SVM and Gradient Boosted Trees are
the only classifiers that can identify at least some papers in
the High class. For machine translation, all classifiers suc-
cessfully identify some of the High class. However, none of
the settings identifies any of the papers in the Highest class.
At this point, it is unclear whether this is a consequence of
the class imbalance in the data set or whether our feature set
is not expressive enough to distinguish the classes. Further
experiments using methods to address class imbalance are
needed.

4.4. Classifying Full Papers
We now turn to the experiments where we use the full text
instead of abstracts. The results of those experiments are
shown in table 5. These results show that predicting im-
pact based on the full text is more successful than predic-
tions using only the abstract: For parsing, Adaptive Boost-
ing reaches an accuracy of 77.27%, which is about 17%
absolute higher than for abstracts. For machine translation,
the same classifier reaches 72.41%, which is 5% absolute
higher than its results on abstracts. Interestingly, both of
these results are based on a small number of features cho-
sen by feature selection. The corresponding F-scores show
similar trends.
The results for the experiments in which we removed the
stopwords are shown in table 6. We focus on the same
settings as in table 5 to allow for a direct comparison be-
tween the two settings. These results show several inter-
esting trends: For parsing, removing stopwords results in
a massive deterioration across all classifiers. For machine
translation, in contrast, Adaptive Boosting shows a minimal
gain of 0.8% absolute in terms of F-score, and Random For-
est gains close to 8% absolute. The reason for these gains
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Topic Classifier # features Class Precision Recall
Parsing Random Forest 10 000 Low 61.54 100.00

High 0.00 0.00
Highest 0.00 0.00

SVM 10 000 Low 67.31 87.50
High 42.86 27.27
Highest 0.00 0.00

Gradient Boost Trees 5 000 Low 62.90 97.50
High 25.00 4.55
Highest 0.00 0.00

Adaptive Boosting 4 000 Low 60.61 100
High 0.00 0.00
Highest 0.00 0.00

Machine translation Random Forest 3 000 Low 67.86 100.00
High 100.00 12.00
Highest 0.00 0.00

SVM All Low 71.83 89.47
High 64.29 34.62
Highest 0.00 0.00

Gradient Boost Trees 10 000 Low 72.05 85.96
High 62.50 38.46
Highest 0.00 0.00

Adaptive Boosting 2 000 Low 68.83 92.98
High 60.00 23.08
Highest 0.00 0.00

Table 4: Per class precision and recall for abstracts

Parsing Machine Translation
Classifier # features Accuracy F-score # features Accuracy F-score
Adaptive Boosting 1 000 77.27 74.56 3 000 72.41 65.38
Support Vector Machines 50 000 68.18 60.35 50 000 71.26 64.43
Random Forest 2 000 71.21 65.56 1 000 71.26 64.50

Table 5: Results for both topics using the whole text (including stopwords)

Parsing Machine Translation
Classifier # features Accuracy F-score # features Accuracy F-score
Adaptive Boosting 1 000 57.58 56.61 3 000 71.26 66.19
Support Vector Machines 50 000 54.55 56.36 50 000 59.77 58.73
Random Forest 2 000 66.67 60.00 1 000 74.71 72.44

Table 6: Results for both topics using the whole text (no stopwords)

require further investigation.

Table 7 shows the results in terms of precision and recall per
class. These results corroborate our findings from table 5:
The classifiers are all more successful in identifying High
Impact papers than when they only have access to abstracts.
This means that full papers contain more information about
whether a paper has future impact on the field. When we
allow stopwords in the features set, we do not find any of
the Highest Impact papers. When we remove stopwords,
however, SVM is able to predict the highest class with a
precision of 12.50% and a recall of 25.00%. Even though
these results are not stellar, we find this very encouraging
in that feature engineering shows some impact on finding

these highly cited papers.

4.5. Feature Analysis
Here we examine what types of features are selected by the
feature selection model on abstracts. We focus on general
trends within the features and potential correlations with
known real world events during the selected time frame.
We first have a look at the experiments using abstracts only.
For the top features for parsing, it is easier to identify com-
mon patterns and trends than for their machine transla-
tion counterparts. For example, the CoNLL 2007 shared
task (Nivre et al., 2007) played an influential role in the
direction of the field and is aligned with our time interval.
This is noted in the returned features return for parsing as
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With Stopwords Without Stopwords
Topic Classifier # features Class Precision Recall Precision Recall
Parsing Adaptive Boosting 1 000 Low 79.17 95.00 70.00 70.00

High 76.47 59.09 40.00 45.45
Highest 0 0 0 0

Support Vector Machines 50 000 Low 65.57 100.00 74.29 65.00
High 100.00 22.73 39.13 40.90
Highest 0 0 12.50 25.00

Random Forest 2 000 Low 71.43 100.00 69.64 97.50
High 77.78 31.82 33.33 9.09
Highest 0 0 0 0

Machine Adaptive Boosting 3 000 Low 71.25 100.00 75.81 82.46
Translation High 85.71 23.08 52.00 50.00

Highest 0 0 0 0
Support Vector Machines 50 000 Low 70.00 100.00 70.49 75.44

High 85.71 23.08 39.13 34.62
Highest 0 0 0 0

Random Forest 1 000 Low 70.89 98.25 78.13 87.72
High 75.00 23.08 65.23 57.69
Highest 0 0 0 0

Table 7: Precision and recall using the whole text

not only are references to the shared task returned, but many
related terms: multilingual, dependency parsing, track. Not
only was the shared task influential, but many of the then
state-of-the-art systems participated in the task. This ex-
plains why so many of the top features can easily be as-
sociated with this knowledge. This leads to an interesting
aspect: that by taking a small time interval, the currently
most prominent topics will lead to the highest correlation
to impact. One way to address this issue may be the use of
topic modeling, for modeling this association between cur-
rent topics of interest in the field and citation counts.This
needs to be investigated further.
The features selected for machine translation, however, are
not particularly informative. In the experiments using stop-
words, many of the high-ranking features for MT are stop-
words: the, we, to. While it is possible that certain gram-
matical constructions may be more clear, and thus papers
that use these constructions may be cited more often, it does
not seem likely. Comparing the features returned by both
Mutual Information and Chi-square do not yield particu-
larly interpretable features. In the experiments disregarding
stopwords, many features can easily be associated with the
field in general: system, evaluation, domain. Such features
should provide any value in distinguishing between differ-
ent levels of impact. This would help explain why there is
little improvement gained without adding large quantities
of features.
One exception is “Joshua” which refers to an MT sys-
tem released in 2009 (Li et al., 2009) and is returned as
a high ranking feature. This is interesting given that it was
intended to be an alternative to the MT system “Moses”
(Koehn et al., 2007) released in 2007 which is also a re-
turned feature but with a much lower ranking. This further
supports the notion of using topics as features for the clas-
sifier may give us access to current trends in the field as an
indication of high impact features. However, one downside

to using topics in this manner is that these topics may be
too specific to a given time interval, and would not have the
same usefulness in terms of determining impact for publi-
cation during a different era given that trends change.

5. Future Work
We have only scratched the surface of the problem of iden-
tifying the future impact of a paper based on textual fea-
tures only. More experimentation and examination of the
features is still required, particularly with regard to pre-
processing decisions and the additions of various types of
representations (e.g., lemmatization). We predict that these
preprocessing decisions will have a strong impact on our
results. Unlike many prediction tasks in which text is of-
ten shorter or limited (such as opinion mining of Twitter
data), more text is available, thus there is a need to deter-
mine the best way of preprocessing such texts to eliminate
as much noise as possible while also keeping specific types
of non-standard features (e.g., keeping track of the number
of figures or tables).
Additionally, while we see some success of classifiers
in predicting high impact papers, we need to investigate
whether other feature types are useful or whether we can
improve results by using methods to address class imbal-
ance in the data. Additional feature types will include char-
acter n-grams, which have been used successfully in stance
detection tasks with imbalanced data (Mohammad et al.,
2016), but also dependency triples and chains. Class imbal-
ance can be addressed by upsampling methods that create
artificial examples. In addition, the five way split described
in section 3. may balance the classes better.
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