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Abstract
Collaboration with a remotely located robot in tasks such as disaster relief and search and rescue can be facilitated by grounding
natural language task instructions into actions executable by the robot in its current physical context. The corpus we describe here
provides insight into the translation and interpretation a natural language instruction undergoes starting from verbal human intent, to
understanding and processing, and ultimately, to robot execution. We use a ‘Wizard-of-Oz’ methodology to elicit the corpus data in
which a participant speaks freely to instruct a robot on what to do and where to move through a remote environment to accomplish
collaborative search and navigation tasks. This data offers the potential for exploring and evaluating action models by connecting natural
language instructions to execution by a physical robot (controlled by a human ‘wizard’). In this paper, a description of the corpus (soon
to be openly available) and examples of actions in the dialogue are provided.
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1. Introduction
Efficient communication in dynamic environments is
needed to facilitate human-robot collaboration in many
shared tasks, such as navigation, search, and rescue oper-
ations. Natural language dialogue is ideal for facilitating
efficient information exchange, given its use as the mode of
communication in human collaboration on these and simi-
lar tasks. Although the flexibility of natural language makes
it well-suited for exchanging information about changing
needs, objectives, and physical environments, one must
also consider the complexity of interpreting human intent
from speech to an executable instruction for a robot. In
part because this interpretation is so complex, we are devel-
oping a human-robot dialogue system using a bottom-up,
phased ‘Wizard-of-Oz’ (WoZ) approach. It is bottom-up in
the sense that we do not assume that we can know a priori
how humans would communicate with a robot in a shared
task. Instead, the phased WoZ methodology, in which hu-
mans stand in for technological components that do not yet
exist, allows us to gather human-robot communication data,
which in turn will be used in training the automated com-
ponents that will eventually replace our human wizards.
Here, we describe the details of our data collection method-
ology and the resulting corpus, which can be used in con-
necting spoken language instructions to actions taken by a
robot (action types and a sample of spoken instructions are
given in Table 1), as well as relevant images and video col-
lected on-board the robot during the collaborative search
and navigation task. Thus, this corpus offers potential for
exploring and evaluating models for representing, interpret-
ing and executing actions described in natural language.

2. Corpus Collection Methodology
Our WoZ methodology facilitates a data-driven understand-
ing of how people talk to robots in our collaborative do-
main. Similar to DeVault et al. (2014), we use the WoZ

Action Type IU
Action Sub-Type N %

Command 1243 94
Send-Image 443 52

“take a photo of the doorway to your right”
“take a photo every forty five degrees”

Rotate 406 47
“rotate left twenty degrees”
“turn back to face the doorway”

Drive 358 42
“can you stop at the second door”
“move forward to red pail”

Stop 29 3
“wait”
“stop there”

Explore 7 1
“explore the room”
“find next doorway on your left”

Request-Info 34 4
“how did you get to this building last time”
“what type of material is that in front of you”

Feedback 28 3
“essentially I don’t need photos behind you”
“no thank you not right now”

Parameter 14 2
“the doorway with the boards across it”
“the room that you’re currently in”

Describe 5 1
“watch out for the crate on your left”

Table 1: Actions distribution over all Instruction Units (IU:
see Section 3.1.) in the corpus (N=858). (Percent sum is
greater than 100% as an IU may have one or more actions).

methodology only in the early stages of a multi-stage de-
velopment process to refine and evaluate the domain and
provide training data for automated dialogue system com-
ponents. In all stages of this process, participants com-
municating with the ‘robot’ speak freely, even as increas-



ing levels of automation are introduced in each subsequent
stage or ‘experiment.’ The iterative automation process uti-
lizes previous experiments’ data.
Currently, we are in the third experiment of the ongoing
series, and our corpus includes data and annotations from
the first two experiments. The first two experiments use
two wizards: a Dialogue Manager Wizard (DM-Wizard,
DM) who sends text messages and a Robot Navigator Wiz-
ard (RN-Wizard, RN) who teleoperates the actual robot. A
naı̈ve participant (unaware of the wizards) is tasked with
instructing a robot to navigate through a remote, unfamiliar
house-like environment, and asked to find and count ob-
jects such as shoes and shovels. The participant is seated
at a workstation equipped with a microphone and a desktop
computer displaying information collected by the robot: a
map of the robot’s position and its heading in the form of
a 2D occupancy grid, the last still-image captured by the
robot’s front-facing camera, and a chat window showing the
‘robot’s’ responses. This layout is shown in Figure 1. Note
that although video data is collected on-board the robot, this
video stream is not available to the participant, mimicking
the challenges of collaborating with a robot in a low band-
width environment. Thus, the participant’s understanding
of the environment is based solely upon still images that
they request from the robot, the 2d map, and natural lan-
guage communications with the robot.

Figure 1: Participant’s interface in experiments: photo
from robot requested by participant (top left), chat win-
dow with text communications from ‘robot’ (bottom left),
dynamically-updating 2D map of robot’s location (right).

At the beginning of the study, the participant is given a list
of the robot’s capabilities: the robot understands basic ob-
ject properties (e.g., most object labels, color, size), rel-
ative proximity, some spatial terms, and location history.
The overall task goal is told explicitly to participants, and a
worksheet with task questions is handed to the participant
before they begin the exploration. For example, partici-
pants are aware that they will be asked to report the number
of doorways and shovels encountered in the environment
and to answer analysis questions, such as whether or not
they believe that the space has been recently occupied. The
participant may refer back to this worksheet, and to the list
of robot capabilities, at any time during the task. To en-
courage as wide a range of natural language as possible, ex-
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Figure 2: An interaction with one transaction unit (see
3.1.), showing the dialogue flow from the participant’s spo-
ken instructions to the robot’s action and feedback.

perimenters do not provide sample robot instructions. The
participant is told that they can speak naturally to the robot
to complete tasks.
In reality, the participant is speaking not to a robot, but to
an unseen DM-Wizard who listens to the participant’s spo-
ken instructions and responds with text messages in the chat
window. There are two high-level response options:

i If the participant’s instructions are clear and exe-
cutable in the current physical environment, then the
DM-Wizard passes a simplified text version of the in-
structions to the RN-Wizard, who then joysticks the
robot to complete the instructions and verbally ac-
knowledges completion to the DM-Wizard over a pri-
vate audio stream.

ii If the instructions are problematic in some way, due
to ambiguity or impossibility given either the current
physical context or the robot’s capabilities, then the
DM-Wizard responds directly to the participant in text
via the chat window to clarify the instructions and/or
correct the participant’s understanding of the robot’s
capabilities.

Figure 2 shows an example transaction unit of the multi-
party information exchange.

We engage each participant in three sessions: a training task
and two main tasks. The training task is simpler in nature
than the main tasks, and allows the participant to become
acquainted with verbally commanding a robot. The main
tasks, lasting 20 minutes each, focus on slightly different
search and analysis subtasks and start in distinct locations
within a house-like environment. The subtasks were devel-
oped to encourage participants to treat the robot as a team-
mate who helps search for certain objects, but also to tap
into participants’ own real-world knowledge to analyze the
environment.
In Experiment 1, our goal was to elicit a full range of com-
munications that may arise. The DM-Wizard typed free-
text responses to the participant following guidelines estab-
lished during piloting that governed the DM-Wizard’s real-
time decision-making (Marge et al., 2016). Ten subjects
participated in Experiment 1.



In Experiment 2, instead of free responses, the DM-Wizard
constructs a response by selecting buttons on a graphical
user interface (GUI). Each button press sends a pre-defined
text message, mapped from the free responses, to either the
participant or RN-Wizard (Bonial et al., 2017). The GUI
also supports templated text messages where the the DM-
Wizard fills in a text-input field, for example to specify how
many feet to go forward in a move command: “Move for-
ward feet.”
To create Experiment 2’s GUI, data from all ten Experiment
1 participants were analyzed to compose a communication
set balancing tractability for automated dialogue and full
domain coverage, including recovery from problematic in-
structions. 99.2% of Experiment 1 utterances were covered
by buttons on the GUI (88.7% were exact matches, 10.5%
were partial text-input matches) which included 404 total
buttons. Buttons generated participant-directed text such as
“processing. . .” “How far southeast should I go?” and “Do
you mean the one on the left?” as well as RN-directed text
such as “turn to face West,” “move to cement block,” and
“send image.”
Experiment 2 included ten new participants and was con-
ducted exactly like Experiment 1, aside from the use of the
DM-Wizard’s GUI. The switch from free-typing to a GUI
is a step in the progression toward increasing automation;
i.e. it represents one step closer to ‘automating away’ the
human wizards. The GUI buttons constrain DM-Wizard
responses to fixed and templatic messages in order to pro-
vide tractable training data for an eventual automated di-
alogue system. Thus, executable instructions from Exper-
iment 2 participants were translated using this limited set
when passed to the RN-Wizard. This difference between
Experiments 1 and 2 is evident in the corpus and the exam-
ple in Figure 6 to follow.

3. Corpus Details
We are preparing the release of our Experiment 1 and
2 data, which comprises 20 participants and about 20
hours of audio, with 3,573 participant utterances (contin-
uous speech) totaling 18,336 words, as well as 13,550
words from DM-Wizard text messages. The corpus in-
cludes speech transcriptions from participants as well as the
speech of the RN-Wizard. These transcriptions are time-
aligned with the DM-Wizard text messages passed to the
participant and to the RN-Wizard. We are also creating
videos that align additional data streams: the participant’s
instructions, the text messages to both the participant and
the RN-Wizard passed via chat windows, the dynamically
updating 2D map data, still images taken upon participant
request, and video taken from on-board the robot through-
out each experimental session (as mentioned in the previ-
ous section, video is collected but is never displayed to the
participant in order to simulate a low band-width commu-
nication environment). We are exploring various licensing
possibilities in order to release as much of this data as pos-
sible.

3.1. Annotations
The corpus includes dialogic annotations alongside the
original data streams. The goal of these annotations is to

illuminate dialogue patterns that can be used as features in
training the automated dialogue system. Although there are
standard annotation schemes for both dialogue acts (Bunt et
al., 2012) and discourse relations (Prasad and Bunt, 2015)
(and our annotations do overlap with both of these) we
found that existing schemes do not fully address the is-
sues of dialogue structure. Of particular interest to us,
and not previously addressed in other schemes, are cases
in which the units and relations span across multiple con-
versational floors. Full details on the annotations can be
found in Traum et al. (2018) and Marge et al. (2017). This
discussion will be limited to annotations that help to sum-
marize what action types are requested in the instructions
and carried out by the robot. We discuss three levels of dia-
logue structure, from largest to smallest: transaction units,
instruction units, and actions or dialogue-moves. Each of
these is defined below.
Each dialogue is annotated as a series of higher-level trans-
action units (TU). A TU is a sequence of utterances aiming
to achieve a task intention. Each TU contains a partici-
pant’s initiating message and then subsequent messages by
the participant and wizards to complete the transaction, ei-
ther by task execution or abandonment of the task in favor
of another course of action.
Within TUs, we mark instruction units (IU). An IU com-
prises all participant speech to the robot within a transac-
tion unit before robot feedback. Each IU belongs to exactly
one TU, so that each transaction’s start (e.g., a new com-
mand is issued) marks a new IU. An IU terminates when
the robot replies to the request, or when a new transaction
is initiated.
To analyze internal IU structure, we annotate participant-
issued finer-grained actions with dialogue-moves. Specific
to the robot navigation domain, these include commands,
with subtypes such as command:drive or command:rotate.
Our schema supports clarifications and continuations of
participant-issued actions, which are annotated as being
linked to the initial action. The relationships of IUs, TUs,
and dialogue moves is exemplified in both Figure 2 and Fig-
ure 3.

Participant Participant ⇦DM
face the doorway on your right in front of you

and take a picture
I see a doorway ahead of me on the right 

and a doorway on the left
the one closest to you

executing...
sent

turn left to face the orange object
executing...

done

IU
₁

IU
₂

Dialogue Move

Dialogue Move

Dialogue Move

Dialogue Move

Translation to RN

Translation from RN

TU
₂

TU
₁

Figure 3: Annotation structures on human-robot dialogue,
shown over participant and DM-Wizard streams.

3.2. Actions in the Data
We analyzed the selection of dialogue-moves that partici-
pants issued in their IUs. Participants often issued more
than one dialogue-move per IU (mean = 1.6 dialogue-
moves per IU, s.d. = 0.88, min = 1, max = 8). Unsurpris-



ingly, the command dialogue-move was the most frequent
across IUs (appearing in 94% of all IUs). Table 1 sum-
marizes the dialogue move types in the corpus, and gives
a sense of the action types requested of the robot to com-
plete search and navigation tasks (full description found in
Marge et al. (2017)).
Actions are initiated by participant verbal instructions, then
translated into a simplified text version passed by the DM-
Wizard to the RN-Wizard, who carries out physical task
execution. Throughout an interaction, feedback is passed
up from both the RN-Wizard to the DM-Wizard and from
the DM-Wizard to the participant. This feedback is crucial
for conveying action status: indicating first that the instruc-
tions were heard and understood, then that they are being
executed, and finally that they are completed.
For each clear, unambiguous instruction (as opposed to in-
structions that require clarifying dialogue between the DM-
Wizard and participant), there are three realizations or in-
terpretations of a single action:

i Participant’s instruction for action, expressed in spo-
ken language;

ii DM-Wizard’s translation into simplified text message
for RN;

iii RN-Wizard’s execution of text instruction with physi-
cal robot, evident to participant via motion on the 2D
map.

In addition to these perspectives on an action, a full TU
also includes the RN-Wizard’s confirmation of execution,
spoken to the DM-Wizard, and finally the DM-Wizard’s
translation of this confirmation to the participant in a text
message. Here, we provide several examples of this ‘trans-
lation’ process from our data, ranging from explicit, simple
instructions to more complex and opaque instructions.
In many cases, the participant provides instructions that are
simple and explicit, such that there is little change in the
instructions from the spoken language to the text version
the DM-Wizard sends to the RN-Wizard(Figure 4). Fur-
thermore, in most of these simple cases, the action carried
out seems to match the participant intentions given that no
subsequent change or correction is requested by the partic-
ipant.

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

turn ninety 
degrees
to the left

ok
turn left 
90
degrees

turning…
done

done

Figure 4: A simple and explicit action carried out.

In other cases, the instructions are less explicit in how they
should be translated into robot action. For example, in Fig-

ure 5, the request for the robot to “Take a picture of what’s
behind you” implicitly requires first turning around 180 de-
grees before taking the picture. Our human DM-Wizard has
no problem recognizing the need for this implicit action, but
in the future, associating queries regarding “behind [X]”
with particular actions will require nuanced spatial under-
standing in our automated system. Other instructions men-
tioning “behind” do not require the implicit turn, such as:
“Can you go around and take a photo behind the TV?” An
adequate system requires the sophistication to tease apart
distinct spatial meanings in different physical contexts.

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

take	a	picture	of	
what's	behind	you

turn	180,	
photo

executing...
image	sent

Figure 5: Here, the instructions must be decomposed into
the prerequisite actions needed to achieve the final goal.

Given the use of the GUI in Experiment 2, some instruc-
tions that appeared to be straightforward and explicit re-
quired a great deal of translation to be properly conveyed
using the limited set of fixed and templatic action messages
available to the DM-Wizard. For example, in Figure 6, the
participant requests that the robot move to a clear destina-
tion (a yellow cone), stopping to take pictures every two
feet along the way. The instruction must be broken into
sub-actions, as there is no fixed message or template in the
interface to express it in its entirety. Thus, the instruction
to move two feet and send a photo is repeated eight times
before reaching the destination.

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

move	toward	the	
yellow	cone
and	take	a	photo	
every	two	feet

processing.	.	.
turn	to	face	
yellow	cone
then.	.	.
move	forward	2	
feet
then.	.	.
send	image

done	and	sent
move	forward	2	
feet
then.	.	.
send	image

Repeated	8	
Iterations

Figure 6: These instructions must be decomposed into sim-
pler robot actions repeated 8 times (2 iterations shown).

Other instructions remain challenging due to their opacity
and demand for pragmatic knowledge. Figure 7 provides
an example that draws upon the robot’s history of actions:
“do the same.” Determining which of the robot’s preceding
actions in a complex series of actions should be included
in “the same” relies upon a sophisticated understanding of



both the physical context and discourse structure (i.e. what
portion of the previous utterance done in a past location
should be done in a new location?).

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

go	into	the	center	of	the	
room	in	front	of	you
and	then	take	a	picture	
at	the	<pause>	east	
south	west	and	north	
position

move	into	the	
center	of	the	room	
in	front	of	you,	take	
photos	at	east,	
south,	west,	north	
positions

executing...

done
done

go	into	the	room	behind	
you
and	do	the	same

Figure 7: The DM-Wizard, and in the future, the robot,
must determine what is indicated by “same.”

4. Conclusions & Future Work
The corpus collected will inform both the action space of
possible tasks and required parameters in human-robot di-
alogue. As such, our ‘bottom-up’ approach empirically de-
fines the range of possible actions. At the same time, we are
exploring symbolic representations of the robot’s surround-
ings, derived from the objects discussed in the environment,
their locations, and the referring expressions used to ground
those objects. For natural language instructions to map
to robot actions, we are implementing plan-like specifica-
tions compatible with autonomous robot navigation. Primi-
tives such as rotations and translations, along with absolute
headings (e.g., cardinal directions, spatial language), will
complement the action space. Possible techniques to lever-
age include both supervised and unsupervised methods of
building these representations from joint models of robot
and language data.
We have trained a preliminary automated dialogue manager
using the Experiment 1 and 2 data, but are continuing to
collect data in simulation to improve the results (Henry et
al., 2017). The system currently relies on string divergence
measures to associate an instruction with either a text ver-
sion to be sent to the RN-Wizard or a clarification question
to be returned to the participant. The challenging cases de-
scribed in this paper demonstrate that a deeper semantic
model will be necessary. Associating instructions referring
to “behind [X]” or “do that again” with the appropriate ac-
tions in context will require modeling aspects of the dis-
course structure and physical environment that go far be-
yond string matching alone.
Furthermore, we are just beginning to tackle precise action
execution methods (Moolchandani et al., 2018). Even if an
action’s overall semantics are understood, ambiguous at-
tributes remain. For example, precisely where and in what
manner should a robot move relative to a door when re-
quested to do so?

This research provides data for associating spoken lan-
guage instructions to actions taken by the robot, as well
as images/video captured along the robot’s journey. Our
approach resembles that of corpus-based robotics (Lauria
et al., 2001), whereby a robot’s action space is directly in-
formed from empirical observations, but our work focuses
on data collection of bi-directional communications about
actions. Thus, this data offers value for refining and eval-
uating action models. As we continue to explore the an-
notations and models needed to develop our own dialogue
system, we invite others to utilize this data in considering
other aspects of action modeling in robots (release sched-
uled for the coming year).
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