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Preface

There has recently been increased interest in modeling actions, as described by natural language expres-
sions and gestures, and as depicted by images and videos. Additionally, action modeling has emerged as
an important topic in robotics and HCI. The goal of this workshop is to gather and discuss advances in
research areas in which actions are paramount e.g., virtual embodied agents, robotics, human-computer
communication, as well as modeling multimodal human-human interactions involving actions. Action
modeling is an inherently multi-disciplinary area, involving contributions from computational linguis-
tics, AI, semantics, robotics, psychology, and formal logic, with a focus on processing, executing, and
interpreting actions in the world from the perspective defined by an agent’s physical preference.

While there has been considerable attention in the community paid to the representation and recog-
nition of events (e.g., the development of ISO-TimeML, ISO-Space, and associated specifications, and
the 4 Workshops on “EVENTS: Definition, Detection, Coreference, and Representation”), the goals of
the AREA workshop are focused specifically on actions undertaken by embodied agents as opposed
to events in the abstract. By concentrating on actions, we hope to attract those researchers working
in computational semantics, gesture, dialogue, HCI, robotics, and other areas, in order to develop a
community around action as a communicative modality where their work can be communicated and
shared. This community will be a venue for the development and evaluation of resources regarding the
integration of action recognition and processing in human-computer communication.

We have invited and received submissions on foundational, conceptual, and practical issues involving
modeling actions, as described by natural language expressions and gestures, and as depicted by images
and videos. Thanks are due to the LREC organisation, the AREA Programme Committee, our keynote
speaker Simon Dobnik, and of course to the authors of the papers collected in these proceedings.

J. Pustejovsky, I. Van der Sluis May 2018
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Language, Action, and Perception
Simon Dobnik
University of Gothenburg

Situated agents interact both with their physical environment they are located in and with their con-
versational partners. As both the world and the language used in situated conversations are continu-
ously changing, an agent must be able to adapt its grounded semantic representations by learning from
new information. A pre-requisite for a dynamic, interactive approach to learning of grounded semantic
representations is that an agent is equipped with a set of actions that define its strategies for identifying
and connecting linguistic and perceptual information to its knowledge. In this talk we present our work
on grounding spatial descriptions that argues that perceptual grounding is dynamic and adaptable to
contexts. We describe a system called Kille which we use for interactive learning of objects and spa-
tial relations from a human tutor. Finally, we describe our work on identifying interactive strategies of
frame of reference assignment in spatial descriptions in a corpus of human-human dialogues and argue
that there is no general preference for frame of reference assignment but this is linked to interaction
strategies between agents that are adopted within a particular dialogue game.

Proceedings of the LREC 2018 Workshop “AREA – Annotation, Recognition and Evaluation of Actions”,
James Pustejovsky, Ielka van der Sluis (eds.)



Action Hierarchy Extraction and its Application

Aliaksandr Huminski, Hao Zhang
Institute of High Performance Computing, Nanyang Technological University

Singapore, Singapore
huminskia@iphc.a-star.edu.sg, hao.zhang@ntu.edu.sg

Abstract
Modeling action as an important topic in robotics and human-computer communication assumes by default examining a large set of
actions as described by natural language. We offer a procedure for how to extract actions from WordNet. It is based on the analysis
of the whole set of verbs and includes 5 steps for implementation. The result is not just a set of extracted actions but a hierarchical
structure. In the second part of the article, we describe how an action hierarchy can give an additional benefit in a representation of
actions, in particular how it can improve an action representation through semantic roles.

Keywords: action hierarchy, action extraction, semantic role.

1. Introduction
In a natural language an action is mainly described by a
verb. Action verbs, also called dynamic verbs in contrast
to stative verbs, express actions and play a vital role in an
event representation. The key question arises: how to de-
termine if a verb is an action verb? There is a well-known
definition that an action verb expresses something that a
person, animal or even object can do. Among the examples
of action verbs1, consider the following two: the verb open
and the verb kick.
Meanwhile, this definition creates a mix in understanding.
If the verb open represents the change of state that happens
after some action, the verb kick represents the action itself.
Rappaport Hovav and Levin (2010) pointed out that an ac-
tion can be expressed by a verb in 2 different ways. There
are verbs called manner verbs that describe carrying out ac-
tivities – manners of doing: walk, jog, stab, scrub, sweep,
swim, wipe, yell, etc.; and there are verbs called result verbs
that describe results of doing: break, clean, crush, destroy,
shatter, etc.2

It should be underlined that result verbs don’t express any
concrete action (for example, the verb clean doesn’t indi-
cate whether it was done by sweeping, washing or sucking;
the same way the verb kill doesn’t indicate how a killing
was done) while manner verbs don’t express any concrete
result (the verb stab doesn’t define distinctively if a person
was injured or killed).
This approach got further elaboration in cognitive science
where an event representation is considered to be based
on 2-vector structure model: a force vector representing
the cause of a change and a result vector representing a
change in object properties (Gardenfors, 2017; Gardenfors
and Warglien, 2012; Warglien et al., 2012). It is argued that
this framework gives a cognitive explanation for manner
verbs as force vectors and for result verbs as result vectors.

1http://examples.yourdictionary.com/action-verb-
examples.html

2Separation of manner and result verbs doesn’t mean they fully
and exhaustively classify verbs. There are verbs that do not fit in
this dichotomy, such as verbs that represent a state, or second-
order predicates like begin and start.

We will further consider ”action verb” as a synonym for
”manner verb”.
The content of this paper is structured as follows. In Sec-
tion 2 we describe both the general framework for action
hierarchy extraction from WordNet and the extraction pro-
cedure with the results. Then, in section 3, we describe how
an action hierarchy can help in the semantic role represen-
tation of actions. Finally, in section 4, we present our main
conclusions and the plans for future research in this area.

2. Action Hierarchy Extraction from
WordNet

WordNet (WN) as a verb database is widely used in
a variety of tasks related to extraction of semantic re-
lations. It consists of verb synsets ordered mainly by
troponym-hypernym hierarchical relations (Fellbaum and
Miller, 1990). According to the definitions, a hypernym
is a verb with a more generalized meaning, while a tro-
ponym replaces the hypernym by indicating a manner of
doing something. The closer to the bottom of a verb tree,
the more specific manners are expressed by troponyms:
{communicate}-{talk}-{whisper}.
Meanwhile, troponyms are not always action (manner)
verbs although the former is defined through ”manner of
doing”. Sometimes they are, like in: {kill}-{drown}.
Sometimes they are not, like in: {love}-{romance}.
Action verbs are hidden in the WN verb structure. We know
that in some troponym-hypernym relations, the verbs are in
fact action verbs. However, there are no explicit ways to
extract them yet.

2.1. Framework
Our idea is that action verbs can be extracted from WN if
at least one of three conditions, applied to a verb is valid:

1. A verb in WN is an action verb if its gloss contains
the following template: ”V + by [...]ing”, where V =
hypernym.

2. A verb in WN is an action verb if its gloss contains the
following template: ”V + with + [concrete object]”,

A. Huminski, H. Zhang: Action Hierarchy Extraction and its Application 2
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where V = hypernym. Restriction on the concrete ob-
ject was made to avoid cases like with success (plea-
sure, preparation, etc).

3. A verb in WN is an action verb if its hypernym is an
action verb. In other words, once the verb synset rep-
resents action verb(s), all branches located below con-
sist of action verb synsets as well, regardless of their
glosses. For example, if {chop, chop up} represents
action verbs because of the gloss: cut with a hack-
ing tool, its troponym {mince} is also an action verb
despite the fact that its gloss doesn’t contain any tem-
plate: cut into small pieces.

Let’s consider some examples to illustrate conditions 1-3.
We start from the top synset {change, alter, modify} (cause
to change; make different; cause a transformation). It
doesn’t satisfy the 1st or the 2nd condition, so we go down
on 1 level and examine one of its troponyms: {clean, make
clean} (make clean by removing dirt, filth, or unwanted
substances from). It is still not an action verb synset: in
the pattern from the 1st condition – ”V + by [...]ing” – the
verb V (make clean) is not a hypernym. On the next level
there are synsets with glosses that satisfy either the 1st or
the 2nd condition:

• {sweep} (clean by sweeping);

• {brush} (clean with a brush);

• {steam, steam clean} (clean by means of steaming).

So, the verbs sweep, brush, steam, steam clean are action
verbs. Applying the 3rd condition on them, one can state
that all synsets located below these 3 synsets (if any) are
action verb synsets. The framework is the basis of the pro-
cedure for action extraction.

2.2. Procedure and Results
The procedure3 includes 5 steps:

1. All verb synsets are automatically extracted from WN
3.1. Total: 13789 verb synsets.

2. At this stage only synsets located on the top level of
the hierarchy are automatically extracted. This kind of
synsets will be called further ”top verb synsets”. They
have troponyms but don’t have any hypernyms. Using
this characteristic, all verb synsets extracted on the 1st
step have been automatically tested whether they have
a hypernym. Total: 564.

3. Top verb synsets are automatically divided into 2 sub-
categories.

• The first sub-category is one-level top verb
synsets that don’t have any other levels below.
Examples: {admit} (give access or entrance to);
{begin} (begin to speak, understand, read, and
write a language). The reason of extraction is
that all 3 conditions mentioned cannot be applied

3It is a modified procedure of the original one from (Huminski
and Zhang, 2018)

Figure 1: The procedure of action verb synsets extraction.

to them. Each condition requires the presence of
a hypernym: either to check the patterns (as in the
1st or the 2nd condition) or to define the status of
a hyponym (3rd condition). Total: 203.

• The second sub-category includes all the top
synsets left. Total: 361.

4. Top verb synsets from the 2nd sub-category are tested
through the conditions 1-3 and the top action verb
synsets are extracted. Top action verb synsets are de-
fined as synsets that:

(a) are satisfied the 1st or the 2nd condition and

(b) are not satisfied the 3rd condition.

Top action verb synsets are located on the highest level
in action hierarchy.

5. At this stage all the branches from the top action verb
synsets are extracted.

The steps of the procedure are illustrated in Figure 1.

3. How an Action Hierarchy Can Improve
Semantic Role Representation of Actions

As an action is represented by a verb, a semantic represen-
tation of actions is closely related to a semantic representa-
tion of verbs which has a long history in linguistics. Dif-
ferent approaches and theories consider, as a starting point,
either a verb itself, like the theory of semantic roles, or a
set of primitives suggested in advance to be combined for a
verb representation.
We will further investigate a representation of actions
through semantic roles. The aim is to demonstrate how the
action hierarchy can help to improve the representation.
As an illustration of the current situation with action rep-
resentation through roles we take Verbnet (VN) (Kip-
per Schuler, 2005). It is the largest domain-independent
verb lexicon with approximately 6.4k English verbs (ver-
sion 3.2b). What is important is that all verbs in VN
have their role frames. The roles are not so fine-grained

A. Huminski, H. Zhang: Action Hierarchy Extraction and its Application 3
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Figure 2: Action verb synsets hierarchy from WordNet.

Figure 3: Selectional restrictions in VerbNet.

as in FrameNet (Fillmore et al., 2002) and not so coarse-
grained as in Propbank (Palmer et al., 2005). Also Verb-
Net was considered together with the LIRICS role set for
the ISO standard 24617-4 for Semantic Role Annotation
(Petukhova and Bunt, 2008; Claire et al., 2011; Bunt and
Palmer, 2013).
Let’s explore how the action verbs from WN are repre-
sented in VN. As an example we take the branch with the
top action verb synset {cut}. See Figure 2. In VN the verbs
cut, saw, chop and hack are located in the class cut 21.1
(the verbs ax and axe are not presented) with the other 11
members and the following role frame: {Agent, Patient, In-
strument, Source, Result}. This means that 15 verbs of the
class are represented the same way and there is no distinc-
tion between them. From this point of view an action repre-
sentation in VN is still coarse-grained. No doubt, it has to
be coarse-grained since only 30 roles are used to represent
6.4k verbs.
To make it more articulate, above the roles the system of se-
lectional restrictions is applied in VN. Each role presented
in a role frame may optionally be further characterized by
certain restrictions, which provide more information about
the nature of a role participant. See Figure 3.
For example, the class eat 39.1 has an agent to be ani-
mate and a patient to be comestible and solid. The above-
mentioned class cut 21.1, to separate it from the other
classes, has the following restrictions: {Agent [int control],

Table 1: Verb classes in VerbNet with identical role frames
and selectional restrictions.

Patient[concrete], Instrument [concrete], Source, Result}.
Nevertheless, even after applying selectional restrictions,
there are classes with both identical role frames and re-
strictions, without mentioning any distinction between
verbs inside a class. For example, the classes destroy-
44 (31 members) and carve-21.2 (53 members) have the
same frame {Agent[int control], Patient[concrete], Instru-
ment[concrete]}. See Table 1.
This may happen because the restrictions are still too coarse
for such a big verb data. For example, for the instru-
ment the restriction [tool] located as the final point on
the path SelRestr→ concrete→ phys-obj→ artifact→ tool
is not enough to distinguish the meaning of the 15 verbs
from the class cut 21.1.
An action hierarchy extracted from WN may benefit the
construction of selectional hierarchical restrictions (SHR)
instead of using just selectional restrictions (SR). Since
members of a class in VN are represented in WN in the
form of an action hierarchy, we can replace the SR by a
fine-grained SHR for each verb in a class. We argue that
an action hierarchy will allow improving the semantic role
representation of actions by adding more detailed restric-
tions to a role participant.
Let’s consider how an SHR looks like for the class cut 21.1
with SR [tool] for the role of Instrument. The action hier-
archy allows to create SHRs with several levels of restric-
tions. First, all verbs located below cut are under the re-
striction ”instrument for separation”. Next step is ”hacking
tool”, ”saw”, ”scissor”, ”shear”, etc. Next one is ”whip-
saw” (under the ”saw”), ”ax” (under the ”hacking tool”),
etc. See Figure 4.
Starting from SR [tool] as a top restriction, an ontology of
restrictions or SHR is created.
The action hierarchy allows creating a semi-automatic on-
tology with levels of restrictions, corresponding to the
depth of hierarchy in WN.

4. Conclusions and Future Work
In this paper, we offer a procedure on how to extract a hi-
erarchy of actions from WordNet. It can be used for an
improvement of the semantic representation of actions.
The procedure of extraction includes 5 steps: 1) extraction
of all verb synsets from WN 3.1.; 2) extraction of the top
verb synsets; 3) extraction of multi-level top verb synsets;
4) extraction of the top action verb synsets by applying the
conditions: ”V + by” and ”V + with”, where V is a hyper-
nym; 5) extraction of all branches of the top action verb
synsets using the condition that a verb in WN is an action

A. Huminski, H. Zhang: Action Hierarchy Extraction and its Application 4
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Figure 4: Selectional hierarchical restrictions.

verb if its hypernym is an action verb.
As a result, each branch contains only action verbs in
troponym–hypernym relation and thus represents a hierar-
chy of actions.
Extracted action hierarchy allows improving representation
of actions by selectional hierarchical restrictions in a se-
mantic role representation.
As future work, the algorithm can be:

• elaborated by adding new patterns and tuning the
original ones. For example, the change-of-state verb
synset {die} has a troponym synset {suffocate, stifle,
asphyxiate} (be asphyxiated; die from lack of oxygen)
which clearly indicates the action causing death but
the gloss doesn’t contain the patterns we are working
with.

• enhanced by annotating a set of glosses as to whether
they are action verbs or not, to bootstrap machine
learning for detecting action verbs from glosses.

5. Bibliographical References
Bunt, H. and Palmer, M. (2013). Conceptual and represen-

tational choices in defining an iso standard for seman-
tic role annotation. In Proceedings of the Ninth Joint
ACL-ISO Workshop on Interoperable Semantic Annota-
tion (ISA-9). Potsdam, Germany.

Claire, B., Corvey, W., Palmer, M., and Bunt, H. (2011).
A hierarchical unification of lirics and verbnet semantic
roles. In Proceedings of the 5th IEEE International Con-
ference on Semantic Computing (ICSC 2011), Palo Alto,
CA, USA.

Fellbaum, C. and Miller, G. (1990). Folk psychology or
semantic entailment? a reply to rips and conrad. The
Psychological Review, 97:565–570.

Fillmore, C. J., Baker, C. F., and Sato, H. (2002). The
framenet database and software tools. In Proceedings
of the Third International Conference on Language Re-
sources and Evaluation (LREC).

Gardenfors, P. and Warglien, M. (2012). Using conceptual
spaces to model actions and events. Journal of Seman-
tics, 29(4):487–519.

Gardenfors, P. (2017). The geometry of meaning: Seman-
tics based on conceptual spaces. MIT press, Cambridge,
Massachusetts.

Huminski, A. and Zhang, H. (2018). Wordnet troponymy
and extraction of manner-result relations. In Proceed-
ings of the 9th Global WordNet Conference (GWC 2018),
Singapore.

Kipper Schuler, K. (2005). VerbNet: A broad-coverage,
comprehensive verb lexicon. Ph.D. thesis. Computer and
Information Science Dept. University of Pennsylvania.
Philadelphia. PA.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The
proposition bank: An annotated corpus of semantic roles.
Computational linguistics, 31(1):71–106.

Petukhova, V. and Bunt, H. C. (2008). Lirics semantic role
annotation: Design and evaluation of a set of data cat-
egories. In Proceedings of the Third International Con-
ference on Language Resources and Evaluation (LREC).
Marrakech, Morocco, 2830.

Rappaport Hovav, M. and Levin, B., (2010). Reflections on
manner/result complementarity, pages 21–38. Oxford,
UK: Oxford University Press.

Warglien, M., Gardenfors, P., and Westera, M. (2012).
Event structure, conceptual spaces and the semantics of
verbs. Theoretical Linguistics, 38(3–4):159–193.

A. Huminski, H. Zhang: Action Hierarchy Extraction and its Application 5

Proceedings of the LREC 2018 Workshop “AREA – Annotation, Recognition and Evaluation of Actions”,
James Pustejovsky, Ielka van der Sluis (eds.)
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Abstract
Collaboration with a remotely located robot in tasks such as disaster relief and search and rescue can be facilitated by grounding
natural language task instructions into actions executable by the robot in its current physical context. The corpus we describe here
provides insight into the translation and interpretation a natural language instruction undergoes starting from verbal human intent, to
understanding and processing, and ultimately, to robot execution. We use a ‘Wizard-of-Oz’ methodology to elicit the corpus data in
which a participant speaks freely to instruct a robot on what to do and where to move through a remote environment to accomplish
collaborative search and navigation tasks. This data offers the potential for exploring and evaluating action models by connecting natural
language instructions to execution by a physical robot (controlled by a human ‘wizard’). In this paper, a description of the corpus (soon
to be openly available) and examples of actions in the dialogue are provided.

Keywords: human-robot interaction, multiparty dialogue, dialogue structure annotation

1. Introduction
Efficient communication in dynamic environments is
needed to facilitate human-robot collaboration in many
shared tasks, such as navigation, search, and rescue oper-
ations. Natural language dialogue is ideal for facilitating
efficient information exchange, given its use as the mode of
communication in human collaboration on these and simi-
lar tasks. Although the flexibility of natural language makes
it well-suited for exchanging information about changing
needs, objectives, and physical environments, one must
also consider the complexity of interpreting human intent
from speech to an executable instruction for a robot. In
part because this interpretation is so complex, we are devel-
oping a human-robot dialogue system using a bottom-up,
phased ‘Wizard-of-Oz’ (WoZ) approach. It is bottom-up in
the sense that we do not assume that we can know a priori
how humans would communicate with a robot in a shared
task. Instead, the phased WoZ methodology, in which hu-
mans stand in for technological components that do not yet
exist, allows us to gather human-robot communication data,
which in turn will be used in training the automated com-
ponents that will eventually replace our human wizards.
Here, we describe the details of our data collection method-
ology and the resulting corpus, which can be used in con-
necting spoken language instructions to actions taken by a
robot (action types and a sample of spoken instructions are
given in Table 1), as well as relevant images and video col-
lected on-board the robot during the collaborative search
and navigation task. Thus, this corpus offers potential for
exploring and evaluating models for representing, interpret-
ing and executing actions described in natural language.

2. Corpus Collection Methodology
Our WoZ methodology facilitates a data-driven understand-
ing of how people talk to robots in our collaborative do-
main. Similar to DeVault et al. (2014), we use the WoZ

Action Type IU
Action Sub-Type N %

Command 1243 94
Send-Image 443 52

“take a photo of the doorway to your right”
“take a photo every forty five degrees”

Rotate 406 47
“rotate left twenty degrees”
“turn back to face the doorway”

Drive 358 42
“can you stop at the second door”
“move forward to red pail”

Stop 29 3
“wait”
“stop there”

Explore 7 1
“explore the room”
“find next doorway on your left”

Request-Info 34 4
“how did you get to this building last time”
“what type of material is that in front of you”

Feedback 28 3
“essentially I don’t need photos behind you”
“no thank you not right now”

Parameter 14 2
“the doorway with the boards across it”
“the room that you’re currently in”

Describe 5 1
“watch out for the crate on your left”

Table 1: Actions distribution over all Instruction Units (IU:
see Section 3.1.) in the corpus (N=858). (Percent sum is
greater than 100% as an IU may have one or more actions).

methodology only in the early stages of a multi-stage de-
velopment process to refine and evaluate the domain and
provide training data for automated dialogue system com-
ponents. In all stages of this process, participants com-
municating with the ‘robot’ speak freely, even as increas-

C. Bonial, S. Lukin, A. Foots, C. Henry, M. Marge, K. Pollard, R. Artstein, D. Traum, C. Voss:
Human-Robot Dialogue and Collaboration in Search and Navigation
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ing levels of automation are introduced in each subsequent
stage or ‘experiment.’ The iterative automation process uti-
lizes previous experiments’ data.
Currently, we are in the third experiment of the ongoing
series, and our corpus includes data and annotations from
the first two experiments. The first two experiments use
two wizards: a Dialogue Manager Wizard (DM-Wizard,
DM) who sends text messages and a Robot Navigator Wiz-
ard (RN-Wizard, RN) who teleoperates the actual robot. A
naı̈ve participant (unaware of the wizards) is tasked with
instructing a robot to navigate through a remote, unfamiliar
house-like environment, and asked to find and count ob-
jects such as shoes and shovels. The participant is seated
at a workstation equipped with a microphone and a desktop
computer displaying information collected by the robot: a
map of the robot’s position and its heading in the form of
a 2D occupancy grid, the last still-image captured by the
robot’s front-facing camera, and a chat window showing the
‘robot’s’ responses. This layout is shown in Figure 1. Note
that although video data is collected on-board the robot, this
video stream is not available to the participant, mimicking
the challenges of collaborating with a robot in a low band-
width environment. Thus, the participant’s understanding
of the environment is based solely upon still images that
they request from the robot, the 2d map, and natural lan-
guage communications with the robot.

Figure 1: Participant’s interface in experiments: photo
from robot requested by participant (top left), chat win-
dow with text communications from ‘robot’ (bottom left),
dynamically-updating 2D map of robot’s location (right).

At the beginning of the study, the participant is given a list
of the robot’s capabilities: the robot understands basic ob-
ject properties (e.g., most object labels, color, size), rel-
ative proximity, some spatial terms, and location history.
The overall task goal is told explicitly to participants, and a
worksheet with task questions is handed to the participant
before they begin the exploration. For example, partici-
pants are aware that they will be asked to report the number
of doorways and shovels encountered in the environment
and to answer analysis questions, such as whether or not
they believe that the space has been recently occupied. The
participant may refer back to this worksheet, and to the list
of robot capabilities, at any time during the task. To en-
courage as wide a range of natural language as possible, ex-

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio 

Stream 2)
face the doorway on 
your right
and take a picture

there’s a door ahead of me 
on the right and one just 
behind me on the right. 
which would you like me 
to face?

the door ahead of 
you on the right

move to face the 
door ahead of you 
on the right, image

executing…
image sent

sent

Dialogue Move

Dialogue Move Transaction	U
nit

In
st
ru
ct
io
n	
U
ni
t

Ti
m
e

Figure 2: An interaction with one transaction unit (see
3.1.), showing the dialogue flow from the participant’s spo-
ken instructions to the robot’s action and feedback.

perimenters do not provide sample robot instructions. The
participant is told that they can speak naturally to the robot
to complete tasks.
In reality, the participant is speaking not to a robot, but to
an unseen DM-Wizard who listens to the participant’s spo-
ken instructions and responds with text messages in the chat
window. There are two high-level response options:

i If the participant’s instructions are clear and exe-
cutable in the current physical environment, then the
DM-Wizard passes a simplified text version of the in-
structions to the RN-Wizard, who then joysticks the
robot to complete the instructions and verbally ac-
knowledges completion to the DM-Wizard over a pri-
vate audio stream.

ii If the instructions are problematic in some way, due
to ambiguity or impossibility given either the current
physical context or the robot’s capabilities, then the
DM-Wizard responds directly to the participant in text
via the chat window to clarify the instructions and/or
correct the participant’s understanding of the robot’s
capabilities.

Figure 2 shows an example transaction unit of the multi-
party information exchange.

We engage each participant in three sessions: a training task
and two main tasks. The training task is simpler in nature
than the main tasks, and allows the participant to become
acquainted with verbally commanding a robot. The main
tasks, lasting 20 minutes each, focus on slightly different
search and analysis subtasks and start in distinct locations
within a house-like environment. The subtasks were devel-
oped to encourage participants to treat the robot as a team-
mate who helps search for certain objects, but also to tap
into participants’ own real-world knowledge to analyze the
environment.
In Experiment 1, our goal was to elicit a full range of com-
munications that may arise. The DM-Wizard typed free-
text responses to the participant following guidelines estab-
lished during piloting that governed the DM-Wizard’s real-
time decision-making (Marge et al., 2016). Ten subjects
participated in Experiment 1.
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In Experiment 2, instead of free responses, the DM-Wizard
constructs a response by selecting buttons on a graphical
user interface (GUI). Each button press sends a pre-defined
text message, mapped from the free responses, to either the
participant or RN-Wizard (Bonial et al., 2017). The GUI
also supports templated text messages where the the DM-
Wizard fills in a text-input field, for example to specify how
many feet to go forward in a move command: “Move for-
ward feet.”
To create Experiment 2’s GUI, data from all ten Experiment
1 participants were analyzed to compose a communication
set balancing tractability for automated dialogue and full
domain coverage, including recovery from problematic in-
structions. 99.2% of Experiment 1 utterances were covered
by buttons on the GUI (88.7% were exact matches, 10.5%
were partial text-input matches) which included 404 total
buttons. Buttons generated participant-directed text such as
“processing. . .” “How far southeast should I go?” and “Do
you mean the one on the left?” as well as RN-directed text
such as “turn to face West,” “move to cement block,” and
“send image.”
Experiment 2 included ten new participants and was con-
ducted exactly like Experiment 1, aside from the use of the
DM-Wizard’s GUI. The switch from free-typing to a GUI
is a step in the progression toward increasing automation;
i.e. it represents one step closer to ‘automating away’ the
human wizards. The GUI buttons constrain DM-Wizard
responses to fixed and templatic messages in order to pro-
vide tractable training data for an eventual automated di-
alogue system. Thus, executable instructions from Exper-
iment 2 participants were translated using this limited set
when passed to the RN-Wizard. This difference between
Experiments 1 and 2 is evident in the corpus and the exam-
ple in Figure 6 to follow.

3. Corpus Details
We are preparing the release of our Experiment 1 and
2 data, which comprises 20 participants and about 20
hours of audio, with 3,573 participant utterances (contin-
uous speech) totaling 18,336 words, as well as 13,550
words from DM-Wizard text messages. The corpus in-
cludes speech transcriptions from participants as well as the
speech of the RN-Wizard. These transcriptions are time-
aligned with the DM-Wizard text messages passed to the
participant and to the RN-Wizard. We are also creating
videos that align additional data streams: the participant’s
instructions, the text messages to both the participant and
the RN-Wizard passed via chat windows, the dynamically
updating 2D map data, still images taken upon participant
request, and video taken from on-board the robot through-
out each experimental session (as mentioned in the previ-
ous section, video is collected but is never displayed to the
participant in order to simulate a low band-width commu-
nication environment). We are exploring various licensing
possibilities in order to release as much of this data as pos-
sible.

3.1. Annotations
The corpus includes dialogic annotations alongside the
original data streams. The goal of these annotations is to

illuminate dialogue patterns that can be used as features in
training the automated dialogue system. Although there are
standard annotation schemes for both dialogue acts (Bunt et
al., 2012) and discourse relations (Prasad and Bunt, 2015)
(and our annotations do overlap with both of these) we
found that existing schemes do not fully address the is-
sues of dialogue structure. Of particular interest to us,
and not previously addressed in other schemes, are cases
in which the units and relations span across multiple con-
versational floors. Full details on the annotations can be
found in Traum et al. (2018) and Marge et al. (2017). This
discussion will be limited to annotations that help to sum-
marize what action types are requested in the instructions
and carried out by the robot. We discuss three levels of dia-
logue structure, from largest to smallest: transaction units,
instruction units, and actions or dialogue-moves. Each of
these is defined below.
Each dialogue is annotated as a series of higher-level trans-
action units (TU). A TU is a sequence of utterances aiming
to achieve a task intention. Each TU contains a partici-
pant’s initiating message and then subsequent messages by
the participant and wizards to complete the transaction, ei-
ther by task execution or abandonment of the task in favor
of another course of action.
Within TUs, we mark instruction units (IU). An IU com-
prises all participant speech to the robot within a transac-
tion unit before robot feedback. Each IU belongs to exactly
one TU, so that each transaction’s start (e.g., a new com-
mand is issued) marks a new IU. An IU terminates when
the robot replies to the request, or when a new transaction
is initiated.
To analyze internal IU structure, we annotate participant-
issued finer-grained actions with dialogue-moves. Specific
to the robot navigation domain, these include commands,
with subtypes such as command:drive or command:rotate.
Our schema supports clarifications and continuations of
participant-issued actions, which are annotated as being
linked to the initial action. The relationships of IUs, TUs,
and dialogue moves is exemplified in both Figure 2 and Fig-
ure 3.

Participant Participant ⇦DM
face the doorway on your right in front of you

and take a picture
I see a doorway ahead of me on the right 

and a doorway on the left
the one closest to you

executing...
sent

turn left to face the orange object
executing...

done

IU
₁

IU
₂

Dialogue Move

Dialogue Move

Dialogue Move

Dialogue Move

Translation to RN

Translation from RN

TU
₂

TU
₁

Figure 3: Annotation structures on human-robot dialogue,
shown over participant and DM-Wizard streams.

3.2. Actions in the Data
We analyzed the selection of dialogue-moves that partici-
pants issued in their IUs. Participants often issued more
than one dialogue-move per IU (mean = 1.6 dialogue-
moves per IU, s.d. = 0.88, min = 1, max = 8). Unsurpris-
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ingly, the command dialogue-move was the most frequent
across IUs (appearing in 94% of all IUs). Table 1 sum-
marizes the dialogue move types in the corpus, and gives
a sense of the action types requested of the robot to com-
plete search and navigation tasks (full description found in
Marge et al. (2017)).
Actions are initiated by participant verbal instructions, then
translated into a simplified text version passed by the DM-
Wizard to the RN-Wizard, who carries out physical task
execution. Throughout an interaction, feedback is passed
up from both the RN-Wizard to the DM-Wizard and from
the DM-Wizard to the participant. This feedback is crucial
for conveying action status: indicating first that the instruc-
tions were heard and understood, then that they are being
executed, and finally that they are completed.
For each clear, unambiguous instruction (as opposed to in-
structions that require clarifying dialogue between the DM-
Wizard and participant), there are three realizations or in-
terpretations of a single action:

i Participant’s instruction for action, expressed in spo-
ken language;

ii DM-Wizard’s translation into simplified text message
for RN;

iii RN-Wizard’s execution of text instruction with physi-
cal robot, evident to participant via motion on the 2D
map.

In addition to these perspectives on an action, a full TU
also includes the RN-Wizard’s confirmation of execution,
spoken to the DM-Wizard, and finally the DM-Wizard’s
translation of this confirmation to the participant in a text
message. Here, we provide several examples of this ‘trans-
lation’ process from our data, ranging from explicit, simple
instructions to more complex and opaque instructions.
In many cases, the participant provides instructions that are
simple and explicit, such that there is little change in the
instructions from the spoken language to the text version
the DM-Wizard sends to the RN-Wizard(Figure 4). Fur-
thermore, in most of these simple cases, the action carried
out seems to match the participant intentions given that no
subsequent change or correction is requested by the partic-
ipant.

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

turn ninety 
degrees
to the left

ok
turn left 
90
degrees

turning…
done

done

Figure 4: A simple and explicit action carried out.

In other cases, the instructions are less explicit in how they
should be translated into robot action. For example, in Fig-

ure 5, the request for the robot to “Take a picture of what’s
behind you” implicitly requires first turning around 180 de-
grees before taking the picture. Our human DM-Wizard has
no problem recognizing the need for this implicit action, but
in the future, associating queries regarding “behind [X]”
with particular actions will require nuanced spatial under-
standing in our automated system. Other instructions men-
tioning “behind” do not require the implicit turn, such as:
“Can you go around and take a photo behind the TV?” An
adequate system requires the sophistication to tease apart
distinct spatial meanings in different physical contexts.

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

take	a	picture	of	
what's	behind	you

turn	180,	
photo

executing...
image	sent

Figure 5: Here, the instructions must be decomposed into
the prerequisite actions needed to achieve the final goal.

Given the use of the GUI in Experiment 2, some instruc-
tions that appeared to be straightforward and explicit re-
quired a great deal of translation to be properly conveyed
using the limited set of fixed and templatic action messages
available to the DM-Wizard. For example, in Figure 6, the
participant requests that the robot move to a clear destina-
tion (a yellow cone), stopping to take pictures every two
feet along the way. The instruction must be broken into
sub-actions, as there is no fixed message or template in the
interface to express it in its entirety. Thus, the instruction
to move two feet and send a photo is repeated eight times
before reaching the destination.

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

move	toward	the	
yellow	cone
and	take	a	photo	
every	two	feet

processing.	.	.
turn	to	face	
yellow	cone
then.	.	.
move	forward	2	
feet
then.	.	.
send	image

done	and	sent
move	forward	2	
feet
then.	.	.
send	image

Repeated	8	
Iterations

Figure 6: These instructions must be decomposed into sim-
pler robot actions repeated 8 times (2 iterations shown).

Other instructions remain challenging due to their opacity
and demand for pragmatic knowledge. Figure 7 provides
an example that draws upon the robot’s history of actions:
“do the same.” Determining which of the robot’s preceding
actions in a complex series of actions should be included
in “the same” relies upon a sophisticated understanding of
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both the physical context and discourse structure (i.e. what
portion of the previous utterance done in a past location
should be done in a new location?).

Participant
(Audio Stream 1)

DM->Participant
(Chat Room 1)

DM->RN
(Chat Room 2)

RN
(Audio Stream 2)

go	into	the	center	of	the	
room	in	front	of	you
and	then	take	a	picture	
at	the	<pause>	east	
south	west	and	north	
position

move	into	the	
center	of	the	room	
in	front	of	you,	take	
photos	at	east,	
south,	west,	north	
positions

executing...

done
done

go	into	the	room	behind	
you
and	do	the	same

Figure 7: The DM-Wizard, and in the future, the robot,
must determine what is indicated by “same.”

4. Conclusions & Future Work
The corpus collected will inform both the action space of
possible tasks and required parameters in human-robot di-
alogue. As such, our ‘bottom-up’ approach empirically de-
fines the range of possible actions. At the same time, we are
exploring symbolic representations of the robot’s surround-
ings, derived from the objects discussed in the environment,
their locations, and the referring expressions used to ground
those objects. For natural language instructions to map
to robot actions, we are implementing plan-like specifica-
tions compatible with autonomous robot navigation. Primi-
tives such as rotations and translations, along with absolute
headings (e.g., cardinal directions, spatial language), will
complement the action space. Possible techniques to lever-
age include both supervised and unsupervised methods of
building these representations from joint models of robot
and language data.
We have trained a preliminary automated dialogue manager
using the Experiment 1 and 2 data, but are continuing to
collect data in simulation to improve the results (Henry et
al., 2017). The system currently relies on string divergence
measures to associate an instruction with either a text ver-
sion to be sent to the RN-Wizard or a clarification question
to be returned to the participant. The challenging cases de-
scribed in this paper demonstrate that a deeper semantic
model will be necessary. Associating instructions referring
to “behind [X]” or “do that again” with the appropriate ac-
tions in context will require modeling aspects of the dis-
course structure and physical environment that go far be-
yond string matching alone.
Furthermore, we are just beginning to tackle precise action
execution methods (Moolchandani et al., 2018). Even if an
action’s overall semantics are understood, ambiguous at-
tributes remain. For example, precisely where and in what
manner should a robot move relative to a door when re-
quested to do so?

This research provides data for associating spoken lan-
guage instructions to actions taken by the robot, as well
as images/video captured along the robot’s journey. Our
approach resembles that of corpus-based robotics (Lauria
et al., 2001), whereby a robot’s action space is directly in-
formed from empirical observations, but our work focuses
on data collection of bi-directional communications about
actions. Thus, this data offers value for refining and eval-
uating action models. As we continue to explore the an-
notations and models needed to develop our own dialogue
system, we invite others to utilize this data in considering
other aspects of action modeling in robots (release sched-
uled for the coming year).
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Abstract
This paper focuses on multimodal human-human interactions and especially on the participants’ engagement through laughter and body
movements. We use Estonian data from the Nordic First Encounters video corpus, collected in situations where the participants make
acquaintance with each other for the first time. This corpus has manual annotations of the participants' head, hand and body movements
as well as laughter occurrences. We examine the multimodal actions and employ machine learning methods to analyse the corpus
automatically. We report some of the analyses and discuss the use of multimodal actions in communication.

Keywords: dialogues, multimodal interaction, laughter, body movement

1. Introduction
Human multimodal communication is related to the flow of
information in dialogues, and the participants effectively
use non-verbal and paralinguistic means to coordinate
conversational situations, to focus the partner's mind on
important aspects of the message, and to prepare the partner
to interpret the message in the intended way.

In this paper we investigate the relation between body
movements and laughter during first encounter dialogues.
We use the video corpus of human-human dialogues which
was  collected  as  the  Estonian  part  of  the  Nordic  First
Encounters Corpus, and study how human gesturing and
body posture are related to laughter events, with the
ultimate aim to get a better understanding of the relation
between the speaker’s affective state and spoken activity.
We estimate human movements by image processing
methods that extract the contours of legs, body, and head
regions, and we use speech signal analysis for laughter
recognition. Whereas our earlier work (Jokinen et al. 2016)
focussed on the video frame analysis and clustering
experiments on the Estonian data, we now discuss laughter,
affective states and topical structure with respect to visual
head and body movements.

We focus on human gesticulation and body movement in
general and pay attention to the frequency and amplitude of
the motion as calculated automatically from the video
recordings. Video analysis is based on bounding boxes
around the head and body area, and two features, speed of
change and speed of acceleration, are derived based on the
boxes. The features are used in calculating correlations
between movements and the participants’ laughing.

Our work can be compared with Griffin et al. (2013) who
studied how to recognize laughter from body movements
using signal processing techniques, and Niewiadomski et
al. (2014, 2015) who studied rhythmic body movement and
laughter in virtual avatar animation. Our work differs from
these in three important points. First, our corpus consists of
first encounter dialogues which are a specific type of social
situation and may have an impact on the interaction
strategies due to participants conforming to social
politeness norms. We also use a laughter classification
developed in our earlier studies (Hiovain and Jokinen,
2016) and standard techniques from OpenCV. Moreover,
our goal is to look at the co-occurrence of body movement
and laughter behaviours from a novel angle in order to gain
insight into how gesturing and laughing are correlated in

human interaction. Finally, and most importantly, we
wanted to investigate the relation using relatively simple
and standard automatic techniques which could be easily
implemented in human-robot applications, rather than
develop a novel laughter detection algorithm.

The paper is structured as follows. Section 2 briefly surveys
research on body movements and laughter in dialogues.
Section 3 discusses the analysis of data, video processing
and acoustic features, and presents results. Section 4 draws
the conclusion that there is a correlation between laughter
and body movements, but also points to challenging issues
in automatic analysis and discusses future work.

2. Multimodal data
Gesturing and laughing are important actions that enable
smooth communication. In this section we give a short
overview of gesturing and laughing as communicative
means in the control and coordination of interaction.

2.1 Body Movements
Human body movements comprise a wide range of motions
including hand, feet, head and body movements, and their
functions form a continuum from movements related to
moving and object manipulation in the environment
without overt communicative meaning to highly structured
and communicatively significant gesturing. Human body
movements can be estimated from video recordings via
manual annotation or automatic image processing (see
below) or measured directly through motion trackers and
biomechanical devices (Yoshida et al. 2018). As for hand
movements, Kendon (2004) uses the term gesticulation to
refer to the gesture as a whole (with the preparatory, peak,
and recovery phases), while the term gesture refers  to  a
visible action that participants distinguish as a movement
and is treated as governed by a communicative intent.

Human body movement and gesturing are multifunctional
and multidimensional activities, simultaneously affected
by the interlocutor’s perception and understanding of the
various types of contextual information. In conversational
situations gestural signals create and maintain social
contact, express an intention to take a turn, indicate the
exchanged information as parenthetical or foregrounded,
and effectively structure the common ground by indicating
the information status of the exchanged utterances (Jokinen
2010). For example, nodding up or nodding down seems to
depend on the presented information being expected or
unexpected to the hearer (Toivio and Jokinen 2012), while
the form and frequency of hand gestures indicate if the
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referent is known to the interlocutors and is part of their
shared understanding (Gerwing and Bavelas 2014, Holler
and Wilkin 2009, McNeill 2005). Moreover, co-speech
gesturing gives rhythm to speech (beat gestures) and can
synchronously occur together with the partner’s gesturing,
indicating alignment of the speakers on the topic. Although
gesturing is culture-specific and precise classification of
hand gestures is difficult (cf. Kendon 2004; McNeill 2005),
some gesture forms seem to carry meaning that is typical to
the particular hand shape. For instance, Kendon (2004)
identified different gesture families based on the general
meaning expressed by gestures: “palm up” gestures have a
semantic theme related to offering and giving, so they
usually accompany speech when presenting, explaining,
and summarizing, while “palm down” gestures carry a
semantic theme of stopping and halting, and co-occur in
denials, negations, interruptions and when considering the
situation not worthwhile for continuation.

Also body posture can carry communicative meaning.
Turning one’s body away from the partner is a strong signal
of rejection, whereas turning sideways to the partner when
speaking  is  a  subtle  way  to  keep  the  turn  as  it
metaphorically and concretely blocks mutual gaze and thus
prevents the partner from interrupting the speaker.

In general, body movements largely depend on the context
and the task, for instance a change in the body posture can
be related to adjusting one’s position to avoid getting
numb, or to signalling to the partner that the situation is
uncomfortable and one wants to leave. Leaning forward or
backward is usually interpreted as a sign of interest to the
partner or withdrawal from the situation, respectively, but
backward leaning can also indicate a relaxed moment when
the participant has taken a comfortable listener position.

Interlocutors also move to adjust their relative position
during the interaction. Proxemics (Hall 1966) studies the
distance between interlocutors, and different cultures are
generally associated with different-sized proximity zones.
Interlocutors intuitively position themselves so that they
feel comfortable about the distance, and move to adjust
their position accordingly to maintain the distance.

2.2 Laughter
Laughter is usually related to joking and humour (Chafe
2003), but it has also been found to occur in various socially
critical situations where its function is connected to
creating  social  bonds  as  well  as  signalling  relief  of
embarrassment (e.g. Jefferson 1984; Truong and van
Leeuwen 2007; Bonin 2016; Hiovain and Jokinen 2016).
Consequently, lack of laughter is associated with serious
and formal situations where the participants wish to keep a
distance in their social interaction. In fact, while laughing
is an effective feedback signal that shows the participants’
benevolent attitude, it can also function as a subtle means
to distance oneself from the partner and from the discussed
topics and can be used in a socially acceptable way to
disassociate oneself from the conversation.

Vöge (2010) discusses two different positionings of
laughter: same-turn laughter, where the speaker starts to
laugh first, or next-turn laughter, where the partner laughs
first. Same-turn laughter shows to the other participants
how the speaker wishes their contribution to be taken and
thus allows shared ground to be created. Laughter in the
second  position  is  potentially  risky  as  it  shows  that  the

partner has found something in the previous turn that is
laughable; this may increase the participants’ disaffiliation,
since the speaker may not have intended that their
contribution had such a laughable connotation, and the
speakers must restore their shared understanding.

Bonin (2016) did extensive qualitative and quantitative
studies of laughter and observed that the timing of laughing
follows the underlying discourse structure: higher amounts
of laughter occur in topic transition points than when the
interlocutors continue with the same topic. This can be seen
as a signal of the interlocutors’ engagement in interaction.
In fact, laughter becomes more likely to occur within the
window of 15 seconds around the topic changes, i.e. the
participants quickly react to topic changes and thus show
their participation and presence in the situation.

Laughter has been widely studied from the acoustic point
of view. Although laughter occurrences vary between
speakers and even in one speaker, it has been generally
observed that laughter has a much higher pitch than the
person’s normal speech, and also the unvoiced to voiced
ratio is greater for laughter than for speech.

Laughter occurrences are commonly divided into free
laughter and co-speech laughter, and the latter further into
speech-laughs (sequential laughter often expressing real
amusement) and speech-smiles (expressing friendliness
and a happy state of mind without sound, co-occurring with
a smile). Tanaka and Campbell (2011) draw the main
distinction between mirthful and polite laughs, and report
that the latter accounts for 80% of the laughter occurrences
in their corpus of spontaneous conversations. A literature
survey of further classifications and quantitative laughter
detection can be found in Cosentino et al. (2016).

There are not many studies on the multimodal aspects of
laughter, except for Griffin et al. (2013) and Niewiadomski
et al. (2015). In the next section we will describe our
approach which integrates bounding-box based analysis of
body movement with a classification of laughs and
emotional states in conversational first encounter videos.

3. Analysis
3.1 First Encounter Data
We use the Estonian part of the Nordic First Encounters
video corpus (Navarretta et al. 2010). This is a collection
of dialogues where the participants make acquaintance with
each other for the first time. The interlocutors do not have
any external task to solve, and they were not given any
particular topic to discuss. The corpus is unique in its
ecological validity and interesting for laughter studies,
because of the specific social nature of the activity.
The Estonian corpus was collected within the MINT
project (Jokinen and Tenjes, 2012), and it consists of 23
dialogues with 12 male and 11 female participants, aged
between 21-61 years. The corpus has manual annotations
of the participants' head, hand and body movements as well
as laughter occurrences. The annotation for each analysis
level was done by a single annotator in collaboration with
another  one,  whose  task  was  to  check the  annotation  and
discuss problematic cases until consensus was achieved.

3.2 Laughter annotation
We classify laughter occurrences into free laughs and
speech-laughs, and further into subtypes which loosely
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relate to the speaker’s affective state (see Hiovain and
Jokinen 2016). The subtypes and their abbreviations are:

· b: (breath) heavy breathing, smirk, sniff;
· e: (embarrassed) speaker is embarrassed, confused,
· m: (mirth) fun, humorous, real laughter,
· p: (polite) polite laughter showing positive attitude

towards the other speaker
· o: (other) laughter that doesn’t fit in the previous

categories; acoustically unusual laughter

The total number of laughs is 530, average 4 per second.
The division between free and speech laughs is rather even:
57% of the laugh occurrences are free laughs. However, the
different subtypes have unbalanced distribution which may
reflect the friendly and benevolent interaction among
young adults: 35% are mirthful, 56% are breathy, and only
4% are embarrassed and 4% polite. This can be compared
with the statistics reported by Hiovain and Jokinen (2016)
on a corpus of free conversations among school friends
who  know  each  other  well:  29%  of  their  laughs  were
mirthful, 48% breathy, and a total of 21% embarrassed.

Most people laughed for approximately 0.8 seconds, and
the laughing is rarely longer than 2 seconds. Speech-laughs
tend to be significantly longer than free laughs (1.24s vs.
1.07s), and mirthful laughs the longest while breathy and
polite types were the shortest. The longest type of laugh
was embarrassed speech laugh produced by both female
and male participants. Figure 1 gives a box plot of the
laugher events and their durations, and also provides a
visualisation of the total duration of the various laughs.

3.3 Video analysis
To recognize gestures and body movement, we use a
variant of the well-known bounding-box algorithm. As
described in Vels and Jokinen (2014), we use the edge
detector (Canny 1986) to obtain each frame's edges and
then subtract the background edges to leave only the person
edges. Noise is reduced by morphological dilation and
erosion (Gonzales and Woods 2010), and to identify human
head and body position coordinates, the contours in the
frame are found (Suzuki and Abe 1985), with the two
largest ones being the two persons in the scene.

The contours are further divided into three regions for head,
body and legs, exploiting the heuristics that the persons are
always standing in the videos. The top region of the contour
contains the head, and the middle region the torso, arms and
hands. The lower region contains the legs, but the contour
is unfortunately not very reliable so it is omitted from the
analysis. Labelled bounding boxes are drawn around the
head, body and leg contours, with a time stamp, as shown
in Figure 2. The boxes are labelled LH (left person head),
LB (left person body), LL (left person legs) and similarly
RH, RB, RL for the right person head, body and legs.

Figure 2 Video frame with bounding boxes for heads, bodies and
legs of laughing persons.

In Jokinen et al. (2016) we studied the relation between
gesturing and laughter, assuming a significant correlation
between laughing and body movements. We experimented
with several algorithms (e.g. Linear Discriminant Analysis,
Principal Component Analysis, and t-distributed Stochastic
Neighbor Embedding), and found that the best results were
obtained by Linear Discriminant Analysis (LDA).

By forming a pipeline where data is first transformed using
LDA and then used to train a classifier to discriminate
between  laughs  and  non-laughs  it  was  possible  to  get  an
algorithm which performed decently on the training set.
Unfortunately LDA fails to capture the complexity of all
the laughing samples, and it seems that certain laughing
and non-laughing frames are inherently ambiguous, since
all the algorithms mixed them up. It was concluded that
laughing bears a relation to head and body movement, but
the details of co-occurrence need more studies.

3.4 Laughter and discourse structure
The video annotations show that the interlocutors usually
laugh in the beginning of the interaction when greeting
each other, and as the conversation goes on, laughing can
be an expression of joy or occur quietly without any overt
action. Considering the temporal relation between laughter
and the evolving conversation, we studied the distribution
of laughter events in the overall discourse structure. In

Figure  1.  Box  plots  of  the  duration of laughter events (upper
part) and the total duration of the laughter events (lower part)
in seconds, with respect to affective states for male and female
speakers. fl = free laugh, st = speech laugh, b= breathy,  e =
embarrassed, m = mirthful, p = polite, o = other. There were
no occurrences of polite or the other speech laughs for males,
and polite speech laugh or other free laugh for women.
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order to provide a comparable laughter timeline among the
dialogues, we quantized the time of each laughter event (in
seconds), and the position of the laughter was calculated
based on its relative position within the utterance. To
compensate for the different lengths of the conversations
we divided the conversations into five equal stages:
Opening, Feedforward, Discuss, Feedback, and Closing,
which are the bins that each laughter events is quantized to.

The results of the temporal distribution are depicted in
Figure  3.  As  can  be  seen,  in  our  corpus  openings  mostly
contain embarrassed speech-laughs, while closings contain
breathy free laughs, and discussion mirthful speech-laughs.
The feedback part is likely to contain free laughs of
embarrassed or mirthful affect, or breathy speech laughs.

3.5 Laughter and acoustic features
Acoustic analysis of laughter is large (see Section 2), and it
is only natural to include speech features in the analysis.
We tried pitch (acoustic frequency) and MFCC features
(mel-frequency cepstral coefficients, short-term power
spectrum representation), and noticed that Linear
Discriminant Analysis (LDA) can separate non-laugh and
laugh signals for both pitch and MFCC, while Principal
Component Analysis (PCA) seems to work only for MFCC
and pitch features introduce confusion. We processed
MFCCs with a 25ms window size, and experimented with
different context sizes to capture all necessary information
that characterises laughing. We group multiple 25ms
windows into larger features called “context windows”. For
instance, a context length of 10 windows means that we add
5 windows in the past and 5 windows in the future to create
a “super vector” feature. The longer the context, the further
the non-laugh and laugh events are pushed from each other.
In our Estonian experiments, we used MFCC features and
a context length of 24 windows.

Figure 4 (left side) visualises how speech laugh is separated
from free laugh using LDA on MFCC features with a
context length of 10 windows, and the right side shows the
same for the more detailed laughter classes with affective
states. Concerning the laugh types on the left, speech-laugh
can be clearly separated from free-laugh using LDA, and
we can see that the laugh types can be recognized given the
mixed information of the MFCC and affective states.

The right side of Figure 4 illustrates the difficulty in
extracting detailed affective state information from all the
laughter annotations. We have highlighted the dense area

of the three most popular affective states: breathy,
embarrassed, and mirthful, and their overlapping circles
show confusion between the different affective states.

On the other hand, when comparing the left and right sides,
we notice that the green zone of speech-laugh on the left
matches the turquoise mirth zone on the right. This
indicates a strong relationship between speech-laughs and
mirthful laughter events. Unfortunately the blue zone of
free laugh overlaps with the breathy and embarrassed laugh
types, thus indicating a more mixed situation.

3.6 Laughter and communicative actions
Laughter is a complex behaviour related to the speaker’s
affective state and interaction with the environment. Body
movements and laughter are usually unconscious rather
than deliberate actions in this context, although their use in
communicative situations can be modelled with the help of
temporal segmentation and categorisation. For instance,
movements can be described via physical action ontologies
related to categorisation of different forms and functions as
with hand gestures, and also include internal structure such
as preparation, climax, and ending, proposed for gestures
as well as laughter events. Unfortunately, the bounding box
technique used in this study does not allow detailed gesture
analysis so it is not possible to draw inferences concerning
e.g. Kendon's gesture families, or co-occurrence of certain
types of movement and speech or laughter. For instance, it
has been noted that the peak of the gesture coincides with
the conceptual focal point of the speech unit (Kendon
2004), and the commonly used audio correlate for gestures,
the  word,  may be  too  big  a  unit.  Gesture  strokes  seem to
co-occur with vocal stress corresponding to an intonation
phrase of a syllable or a mora, rather than a whole word.

In the Gesture-for-Conceptualization Hypothesis of Kita et
al. (2017), gestures are generated from the same system that
generates practical actions such as object manipulation, but
distinguished from them in that gestures represent
information. We extend this hypothesis to take the
speaker’s affective state into consideration, and consider it
as the starting point for communication. It leads us to study
body movements and laughter, together with spoken
utterances and dialogue topics, as actions initiated by the
agents based on their affective state, and co-expressively
represented by body movements, gesturing, laughter and

Figure 3 Temporal distribution of the affective laughter types in a
dialogue structure consisting of five stages. The laughter
abbreviations are as in Figure 1.

Figure 4 Applying LDA on MFCC features, with rings showing
laugh types on the left (blue = free laugh, green = speech laugh)
and affective states on the right (blue = breathy, green =
embarrassed, turquoise = mirth).
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spoken utterances. For instance, the cascade model, where
the analysis starts from sensory data, integrates the results
of decision processes, and finally ends up with a response
to the stimuli, has been replaced by a uniform view that
regards action control and action representation as two
sides of the same coin (Gallese 2000).

When designing natural communication for robot agents,
cross-modal timing phenomena become relevant as the
delay in the expected synchrony may lead to confusion or
total misunderstanding of the intended message (Jokinen
and Pelachaud 2013). Manual modelling of the general
semantics encoded in the different gesture forms in the
robot application as in Jokinen and Wilcock (2014) or in
animated agents (André and Pelachaud 2009) is an
important aspect in these studies, and can be further
deepened by automatic analysis and detection algorithms
as in the current study. Body movements and speech flow
are closely linked in one’s communicative system and
between interlocutors in their synchronous behaviour,
although the hypothesis of the motor origin of language still
remains speculative. An interesting issue in this respect
concerns cross-modality annotation categories and the
minimal units suitable for anchoring the correlations.

Communicative action generation and annotation are
related to the broader issue of the relationship between
action and perception in general, and it would be possible
to investigate how humans embody the knowledge of
communicative gestures via action and interaction, and
how communicative gestures are related to acting and
observing someone else acting. We can assume that a
higher-level control module takes care of the planning and
action control, whereas the perception system provides
continuous feedback about the selected actions and their
effect on the environment. Connections are based on the
particular context in which the actions occur, so
representations require interpretation of the agent’s goals
and action purposes for which the act and representation
are used in the given context. For instance, extending one’s
index finger may be executed to point to an object, grasp a
mug,  rub  one's  nose,  or  play  with  fingers,  so  the  same
movement becomes a different action depending on the
purpose. Communicative gestures are perceived, learnt,
and executed for certain communicative purposes, so
perception of a certain type of hand gesture is connected to
the assumed communicative action, with the purpose for
example to provide information, direct the partner's focus
of attention, or stop the partner from speaking.

4. Conclusions and Future Work
We studied laughter and body movements in natural first
encounter interactions. The most common laughter type in
our Estonian corpus is mirthful, humorous laugh, which
includes both free laugh and speech laugh. The longest
laughter events are of mirthful types, whereas the polite and
breathy laughs were the shortest.

The study gives support for the conclusion that laughing
bears a relation to head and body movement, but also
highlights the need for accurate and sophisticated
movement detection algorithms to capture the complexity
of the movements involved in laughing. On the basis of the
experiments, it seems that the bounding box approach and
the associated speed and acceleration of the movements are

too coarse features to infer correlation of the body
movements with laughter. For instance, it is not easy to
model temporal aspects and intensity of laughter
occurrences as they seem to include a complex set of
behaviours where body, hand, and head movements play
different roles. The bounding box approach collapses all
these movements into the two features of velocity and
acceleration and is prone to information loss concerning the
finer aspects related to body movements and laughter.

On the other hand, the bounding box approach potentially
adapts to different settings of the camera angle (front, or
sideways recordings of the participants), and it serves well
for the particular dataset with the manual annotation of
laughter. For instance, we experimented with affective
states related to the commonly used emotional descriptions
of laughter events (mirthful, embarrassment, politeness),
and noticed that these classes can be detected with the
bounding box techniques, although there is much confusion
between the types.

Due to the roughness of bounding boxes to detect human
head and body position we also started to investigate Dense
Optical Flow (Brox et al.  2004), which is used for action
modelling and has been successfully deployed to action
recognition. Compared with Canny edge detector, it does
not suffer from dynamic changes in the video frames such
as varying lightning conditions, and can thus provide
stability and more coverage for different video types.
Moreover, it may be possible to use Optical Flow to study
specific types of body motion and if they occur during
laughter which cannot be captured by frame difference
models like bounding boxes.

The work contributes to our understanding of how the
interlocutors’ body movements are related to their affective
state and experience of the communicative situation. From
the point of view of interactive system design, a model that
correlates the user’s affective state and multimodal activity
can be an important component in interaction management.
It can be used to support human-robot interaction, as the
better understanding of human behaviour can improve how
the robot interprets the user’s laughter or anticipates certain
reactions based on the observed body movements. It can
also be used as an independent module to determine the
robot’s own behaviour and to plan more natural responses
in terms of gesturing and laughter. Such precise models are
valuable when developing the robot agent's capabilities
towards natural interaction for practical applications like
various care-taking situations in social robotics (Jokinen
and Wilcock, 2017).

Future work includes experimenting with larger interaction
data and the more recent computer vision methods, and
exploring more specific features to associate body
movements and laughter. We also plan to upload a more
precise model in the robot to experiment with human-robot
interactions.
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Abstract
In this paper, we present results from a deep neural network event classifier that uses lexical semantic features derived from parameters
that are underspecified in the event typing. These results demonstrate that the presence or absence of an underspecified feature is a
strong predictor of event class, and we propose a model for extending this approach to action recognition (i.e., the recognition of
processes enacted by an agent) by using reinforcement learning to learn complex actions from object motions, and then “factoring out”
the specifics of the object to recognize an action denoted by an agent motion, such as a gesture, alone.

Keywords: actions, events, semantics, multimodal, language, gesture, recognition, classification.

1. Introduction
Work in event visualization from natural language descrip-
tion (e.g., (Coyne and Sproat, 2001; Siskind, 2001; Chang
et al., 2015) among others) often struggles with the prob-
lem of underspecified parameters in events enacted over ar-
bitrary objects. These parameters may be inherent to the
event itself (e.g., speed, direction, etc.), or properties of
the object argument(s) (e.g., axis of rotation, geometrical
concavity, etc.). Should a computational visualization sys-
tem use an inappropriate value for one of these parameters,
it may generate a visualization for a given event that does
not comport with a human viewer’s understanding of what
that event is, such as rotating a cylindrical object about its
non-major axis for a “roll.” Previously we explored these
issues and solutions to them in (Krishnaswamy and Puste-
jovsky, 2016a; Krishnaswamy and Pustejovsky, 2016b; Kr-
ishnaswamy, 2017).
Event recognition from the perspective of visual data pro-
cessing or object tracking (cf. (Yang et al., 2013)) provides
a venue to explore “learning from observation,” and as a
domain has achieved recent relevance in human commu-
nication with robotic agents (Yang et al., 2015b; Paul et
al., 2017). Captured three-dimensional sequences of la-
beled events performed by human actors can be classified
as distinct event types. Learning can abstract away the
parameters that vary across instances of the same motion
class in the data, making those parameters underspecified
as well, as in the visualization problem discussed above.
In order for an embodied agent to interact with objects, the
agent must use its hands, and the hand motions effect forces
upon the object, and therefore the action undertaken with
it. Thus, we expect that the same parameter abstraction ap-
proach can be used for the agent’s hand motions, regardless
of whether an actual object is being manipulated. This cre-
ates a path toward action recognition from hand gestures
only.
We assume causal events are composed of an object model,
which captures the change an object is undergoing over
time, and an action model, which characterizes the activ-
ity that inheres in the causing agent (Pustejovsky and Kr-
ishnaswamy, 2016). We have been exploring event visu-
alization through multimodal simulations using scenarios
involving objects moving, and event learning and compo-

sition through observation focusing on the object position
sequence rather than the agent motion. In this paper, we
will present results from the former system and methodol-
ogy from the latter to introduce a framework for learning
action recognition from the movements of the agent rather
than the object. We expect such a framework may be useful
for recognizing and evaluating the actions denoted by agent
motions enacted without attached objects, e.g., by gestures.

2. Related and Prior Research
Event detection and classification in NLP often rely on deep
learning algorithms that exploit shallow lexical features and
word embeddings. While these approaches are able to take
advantage of big data resources for scalability, they often
fail to leverage richer semantic information that situates the
event in the world (Spiliopoulou et al., 2017), which is an
important factor in QA and event understanding (Saurı́ et
al., 2005).
An agent’s embodiment might be a physical presence or
merely a point of view, but it provides important knowl-
edge about objects in the world, their situatedness, and their
availability for different types of interactions. Therefore,
we created visualizations of events in a three-dimensional
visual event simulator, VoxSim (Krishnaswamy and Puste-
jovsky, 2016a; Krishnaswamy and Pustejovsky, 2016b),
and its underlying modeling language, VoxML (Puste-
jovsky and Krishnaswamy, 2016), while varying the param-
eters that are left underspecified in the event semantics (as
encoded in VoxML), and then presented the visualizations
for human evaluation to determine a set of “best values” for
said parameters.
Event recognition that combines language and visual data
for various purposes is a subject of many models and ap-
proaches within the computer vision (Ikizler et al., 2008;
Gupta et al., 2009; Cao et al., 2013; Siddharth et al.,
2014; Andriluka et al., 2014) and computational linguis-
tic (Ronchi and Perona, 2015; Gella et al., 2016) commu-
nity. Our rich model of events and their participants also fa-
cilitates human communication with a computational agent
(Pustejovsky et al., 2017), and so we use the annotation ca-
pabilities of VoxML to annotate and learn event represen-
tations from existing video data (Do et al., 2016; Do and
Pustejovsky, 2017a). Since these two lines of research ap-
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slide
LEX =


 PRED = slide

TYPE = process



TYPE =




HEAD = process

ARGS =




A1 = x:agent
A2 = y:physobj
A3 = z:surface




BODY =




E1 = grasp(x, y)
E2 = [while(hold(x, y),

while(EC(y, z),
move(x, y)))]










Figure 1: Sample VoxML semantics: [[SLIDE]]. Note the
absence of speed and direction parameters, indicating they
are underspecified. (EC refers to the Region Connection
Calculus (Randell et al., 1992) relation “externally con-
nected”)

proach event classification and learning from the generation
and the recognition sides, respectively, we aim to bridge
the two to create a multimodal event representation capa-
ble of being learned from sparse data (a la (Do and Puste-
jovsky, 2017b; Zellers and Choi, 2017)), that can separate
the object motion from the complete event model, leaving
the agent’s motion, or “action model.”

3. Event Classification
Using VoxSim, we generated three visualizations for each
input sentence of the imperative form V ERB x (or V ERB
x RELATION y for those verbs requiring an adjunct).
The visualizations were presented to Amazon Mechani-
cal Turk workers for evaluation in a pair of tasks, one
of which gave the Turkers a single animated movie of an
event and asked them to select, out of three heuristically-
generated possible captions (one of which was the origi-
nal input sentence; the other two vary either the verb or
the indirect object if applicable), the best one. Multiple
options were allowed as was “none.” Each Human Intel-
ligence Task (HIT) was completed by 8 individual work-
ers, for a total of 26,856 individual evaluations. This task
effectively required annotators to predict which sentence
was used to generate the visualization in question. As this
closely resembles event classification with a discrete label
set, these results (Krishnaswamy, 2017) provide a “ground
truth” against which to assess machine-learning algorithms
performing an analogous task.

Figure 2: Sample VoxSim capture as presented to evalua-
tors. Caption options for this video were a) “put the block
touching the spoon”; b) “move the block” (the original in-
put sentence); and c) “put the block near the bowl.”

During the visualization process, we saved feature vectors

containing the randomly-generated values for those param-
eters of each verb that were left underspecified in its seman-
tic encoding. As certain verbs (such as “move”) are highly
underspecified, with most parameters left without assigned
values, while others (for example, “put”) may have only
one or a few underspecified parameters, these feature vec-
tors were given sparse representations as JSON dictionaries
that were then “densified” with empty values for machine
learning.

{"MotionSpeed":"12.21398",
"MotionManner":"turn(front cover)",

"TranslocSpeed":"",

"TranslocDir":"",

"RotSpeed":"",

"RotAngle":"104.7686",

"RotAxis":"",

"RotDir":"",

"SymmetryAxis":"",

"PlacementOrder":"",

"RelOrientation":"",

"RelOffset":""}

Figure 3: “Densified” feature vector for “open the book”
action, showing list of parameters evaluated against

The task put to the classifiers trained on these feature vec-
tors was to pick the verb of the input sentence that generated
the feature vector and its associated visualization, out of ei-
ther the same three choices given the human evaluators for
the same question (the “restricted” choice set), or all action
verbs in the test set (the “unrestricted” choice set).

move(x) put(x,touching(y)) flip(x,edge(x))
turn(x) put(x,on(y)) flip(x,center(x))
roll(x) put(x,in(y)) close(x)
slide(x) put(x,near(y)) open(x)
spin(x) lean(x,on(y))
lift(x) lean(x,against(y))

Table 1: Event predicate test set

We first established a baseline by feeding these feature vec-
tors into a maximum entropy logistic regression classifier
using generalized iterative scaling. Next we trained a multi-
layer neural network, consisting of four layers of 10, 20, 20,
and 10 nodes, respectively, using the TensorFlow frame-
work (Abadi et al., 2016) with a variety of variations:

1. A “vanilla” four-layer DNN
2. DNN with features weighted by IDF metric1

3. DNN with IDF weights on only “discrete” features
(those features which are maximally specified by
choosing a value assignment out of a set of categories
rather than a continuous range—i.e., motion manner,
rotation axis, symmetry axis, placement order, and rel-
ative orientation)

1The “inverse document frequency” of a feature (the “term”)
in a vector (the “document”). Since each feature occurs at most
one time in each feature vector, tf for any feature and any vector
is either 1 or 0, making TF-IDF over this dataset identical to IDF
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4. DNN excluding feature values and including IDF-
weighted binary presence or absence only

5. A combined linear-DNN classifier, using linear esti-
mation for continuous features and DNN classification
for discrete features

6. Combined linear-DNN classifier with features
weighted by IDF metric

7. Combined linear-DNN classifier with IDF weights on
the discrete features only

8. Combined linear-DNN classifier excluding feature
values and including IDF-weighted binary presence or
absence only

10-fold cross-validation was run on the baseline and all
neural net classifier variations for up to 5,000 training steps,
with a convergence threshold of .0001 for the MaxEnt al-
gorithm.

µ Accuracy µ Accuracy
Classifier (restricted set) (unrestricted set)
Baseline 0.4850 0.1662
DNN variant 1 0.9788 0.9514
DNN variant 2 0.9788 0.9547
DNN variant 3 0.9800 0.9550
DNN variant 4 0.9895 0.9707
DNN variant 5 0.9615 0.9150
DNN variant 6 0.9600 0.9144
DNN variant 7 0.9615 0.9675
DNN variant 8 0.9871 0.9150

Table 2: Mean classifier accuracy across cross-validation

All DNN variations identified the motion predicate with
greater than 90% accuracy even when given a choice of
all available motion predicates. Both DNN and combined
Linear-DNN methods that used feature IDF weights only
in place of actual feature values actually outperformed all
other methods. In the purely deep learning network, the
weights-only method (variant 4) ends up besting all the
others slightly (by about 1-2%). Independent of its actual
value, the presence or absence of a given underspecified
feature turns out to be quite a strong predictor of motion
class.
For this event classification task, we used simulated visu-
alizations of objects moving without being affected by an
agent. Since an event’s exact manner of underspecification
depends on which parameters are missing from the event
semantics, we can intuit that, in an action performed by
an agent, whether real or simulated, if those same parame-
ters do not remain constant across multiple iterations of the
same event, that should be a signal that those agent motions
are also denoting an event where those same parameters are
underspecified or missing.

4. Complex Event Learning
Many of the events or actions used in the task outlined in
Section 3. are quite complex. For example, lean(x, on(y))
requires a series of rotations of x and then a movement of
x so that it touches y in an appropriate configuration. Even
something conceptually simple, such as put(x, near(y)),

requires a series of translations that can be difficult for a
computer to distinguish from other types of motions involv-
ing changing relations between two objects.
As this is a sequential learning problem, we turn to LSTM
(Hochreiter and Schmidhuber, 1997) to learn the sequence
of primitive events that comprise a complex event. LSTM
has found utility in a range of problems involving sequen-
tial learning, such as speech and gesture recognition. If the
sequence can be effectively learned, it should be able to be
reproduced by a virtual embodied agent, whose objective is
to produce a sequence of actions that resembles movement
of objects in the training data. This type of parameterized
reinforcement learning is best solved by using policy gra-
dients (Gullapalli, 1990; Peters and Schaal, 2008). Here,
we use the REINFORCE algorithm (Williams, 1992), for
its effectiveness in policy gradient learning.
Using ECAT, an open-source event capture and annotation
tool (Do et al., 2016), we capture performers interacting
with objects on a table to replicate the virtual scenes gen-
erated with VoxSim, but with the presence of a real agent
to manipulate the objects. For the purpose of event learn-
ing we limit the object set to only blocks. Video is cap-
tured with Microsoft Kinectr depth-sensing cameras, ob-
jects are tracked using markers fixed to their sides, and
three-dimensional coordinates of performer joints are also
captured and annotated. ECAT annotation provides a map-
ping to VoxML object and event semantics.

Figure 4: Performing an object interaction

Captured object positions are then flattened to two dimen-
sions in order to normalize any jitter in the capture and al-
low for easier evaluation of object relations relative to the
table surface. This simplified simulator is written in Python
and allows for simulation of data that is similar to the real
captured data without the graphics overhead required by
VoxSim.
A sequence of feature vectors, S, which represent the quali-
tative spatial relations between the objects in the action cap-
tures or the simplified simulator, is fed to an LSTM network
along with a frame number i and an event e. The network
outputs a function f(S, i, e) = 0 ≤ qi ≤ 1 that estimates
the progress of e at frame i.
The virtual agent’s objective is then to manipulate the ob-
jects in sequence, for a reward that is greater when the
generated sequence more closely approximates the move-
ment of objects in the training data. We aim to achieve
this via reinforcement learning, using the REINFORCE
algorithm with a Gaussian distribution policy πθ(u|x) =
Gaussian(µ, σ), where dim(µ) is the degree of freedom
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Figure 5: Simplified simulator in two dimensions

in position (2 dimensions) and dim(σ) is the degree of free-
dom in orientation (1 dimension).
Planning is parameterized by policy parameters θ : uk ∼
πθ(uk|xk), where uk is the motion performed by the agent
at step k and xk is current set of relations between objects.
µ and σ are learned by an artificial neural network weighted
by θ from the REINFORCE algorithm, which is determined
by gradient descent.
We simulate each atomic object manipulation uk, record
the frame-to-frame sequential features, feed them into
LSTM network to estimate how fully uk completes the
complex event in question, then calculate the immediate re-
ward as the difference between the complex event progress
at the beginning of uk and at the end of uk, and finally se-
lect the agent move that leads to the highest reward.
The result is a sequence that can be executed by a virtual
agent within the VoxSim environment. If successful, a hu-
man judge watching this executed event should agree that
it satisfies the event class of the description as in the event
classification task described in Section 3.. Experiments are
currently ongoing to test this model of event learning (Do
et al., 2018).

5. Extracting Actions from Events
Where captured instances contain multiple object configu-
rations or permutations under the same label (for example,
building rows of varying numbers of blocks or putting two
objects near each other in various orientations), the LSTM
learns event progress by changes in object relations, such
as the number and relative orientation of EC or “touch-
ing” relations between objects in a row. This allows the
REINFORCE algorithm to generalize a concept (e.g., row)
to set of common relations across all captured or simulated
instances without a set number of blocks. This makes the
parameters that vary across the captured instances under-
specified.
As we have shown that underspecified motion features ap-
pear to be strong signals of event class for objects moving in
isolation, we expect the same principle holds for objects be-
ing manipulated by an agent, especially as one of the goals
of our reinforcement learning pipeline is to abstract away
those parameters whose values vary across the performed
or simulated example actions.
For instance, let us return to the semantics of “slide” pre-
sented in Figure 1. One of the requirements is that at all

Figure 6: Frame of an agent demonstrating a gesture repre-
senting “slide”

times the moving object is kept EC (externally connected)
with the supporting surface. Since in a 3D environment,
all motions eventually break down into a series of trans-
lations and rotations, all relations between objects can be
represented as relative offsets and orientations, as in the
reinforcement learning trials. Thus, if “sliding” motions
of various speeds and moving in various directions all re-
turn roughly equal rewards as long as the object remains
attached to the supporting surface (as the LSTM should
produce high values of event progress for all these mo-
tions given enough performed examples), the REINFORCE
algorithm should be able to generate an event sequence
wherein many values for these parameters can be sampled
from the Gaussian distribution, and the action, when per-
formed by an agent with those values, should satisfy an ob-
server’s judgment given the “slide” label. Thus the high
variance of motion speed and motion direction comport
with those parameters’ status as strong signals of the “slide”
event class.
Since in the 3D simulated world with the agent, objects are
manipulated by attaching them to the agent’s “graspers” or
hands, so that the motion of the hand controls the motion of
a grasped object, it is the motion of the hand that dictates
what class of action is being undertaken. Thus in the above
example, if the hand motion may take a wide variety of val-
ues of speed and direction but always maintains a constant
or near-constant vertical offset with the surface (represent-
ing the height of the object being moved), then this motion
may be interpreted as representing a “slide,” regardless of
whether or not any actual object is being moved. If no ob-
ject is moved along with the hand, this “action model” be-
comes a “mime” or gestural representation of the action in
question.

6. Conclusion
In this paper, we have argued and presented evidence that
underspecified parameters associated with motion events
can serve as reliable indicators of a particular event class.
We have also presented a framework for action learning that
relies on abstracting away those motion parameter values
that may vary across individual instances and performances
of events. These two avenues naturally combine to create
a pipeline for action recognition by a computational agent
using information from visual and linguistic modalities (cf.
(Yang et al., 2014; Yang et al., 2015a), and for using ac-
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tion performance and gestural representations of actions as
a learnable communicative modality between humans and
computers.
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Abstract 
Actions are productive concepts, but they are both linguistically and cognitively underdetermined: what defines an action in the event 
continuum is still an open question. The linguistic encoding of actions offers both problems and solutions to the issue of identifying 
these concepts. First of all, many action verbs do not identify one single action, but can refer to different action concepts. Secondly, 
each language categorizes actions in its own way. The IMAGACT Ontology of Action adopts a flexible approach to categorization that 
allows us to make a semantically coherent discrimination of action concepts across different languages. To this end IMAGACT 
employed the systematic annotation of Local Equivalence, i.e. the property that different verbs (with different meanings) can refer to 
the same action concept. However, Local Equivalences alone do not solve the problem of action identification: a further distinction of 
Local Equivalence relations is required in order to separate productive from non-productive equivalences. In fact, when such 
productivity is missing, Local Equivalences are not essential for action concept identification.  

Keywords: Ontology of Action, Annotation Methodology, Equivalent Verbs 

1. The IMAGACT Framework 

1.1 Action Concepts and General Verbs 

Each action extends to an open set of differing events: 
therefore, actions are productive concepts. Productivity 
manifests itself first in the action/object relation. In 
principle, an action specifies a pattern of world 
modifications performed by an AGENT. This pattern can be 
applied to an open set of objects and, conversely, each 
object may undergo an open set of actions.  
Such a property is mirrored at the linguistic level in the 
predicate/argument structure: a verb referring to an action 
can be applied to an open set of arguments, which in turn 
may undergo an open set of action verbs.  
Beyond this, action annotation is a complex task, since the 
reference entities are largely underdetermined: what 
defines an action in the event continuum remains an open 
question. For instance, as modern neurology has 
demonstrated, different sensory-motor patterns performed 
with the same GOAL are categorized under the same action 
concept at the brain level (Umilità et al., 2008). This 
datum would lead us to define the way we conceptualize 

actions on the basis of AGENT intentions. Nonetheless, we  
do not really know to what extent we are performing the 
same action when we use different means to achieve the 
same purpose. In other words, we do not know to what 
extent is the GOAL a definitional criterion for a given 
action concept. 
The linguistic encoding of actions offers both problems 
and solutions to the issue of identifying these concepts. 
An action verb is usually understood by competent 
speakers as a tag for one single action, but this impression 
does not match with reality. A large number of high 
frequency action verbs, such as to take or to put, do not 
identify one single action.  
We call verbs which share this property general. Such 
verbs refer to many different action concepts, making the 
need for a cognitive level of action categorization which is 
independent from the linguistic one quite clear. 
Figure 1, derived from the IMAGACT Cross-Linguistic 
Ontology of Action (Moneglia, 2014; Panunzi et al., 
2014), shows this in practice: the different actions to 
which we can refer using the verb to take are presented by 
means of screenshots, with each one taken from a brief 
Scene (i.e. a recorded video or a 3D animation belonging 

Figure 1: Actions referred by the verb to take (partial and unstructured overview)  
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to the IMAGACT ontology)
1
. Within the IMAGACT 

framework, these Scenes are conceived as prototypes 
(Rosch, 1978; 1983) that stand for broader classes of 
actions. In this way, the set of Scenes linked to each verb 
identifies its semantic variation. As Figure 1 shows, the 
actions of taking correspond to many different 
(cognitively distinguishable) activities within the actual 
language usage, each one representable by a prototypical 
Scene. 
Contrary to other lexical databases (e.g. WordNet; Miller, 
1995; Fellbaum, 1998), IMAGACT records in the 
ontology only those fields of application in which a verb 
extends “in its own meaning”. Abstract and metaphorical 
concepts are excluded, even if they are frequently 
conveyed by action verbs (37,9% of action verb 
occurrences  in the Italian corpus; and 49,9% in the 
English corpus; Moneglia, 2014b). This requirement 
ensures that the corpus induced ontology specifically 
gathers physical actions and that verbs apply productively 
to the action concepts in their extension. This choice is 
underpinned by a semantic reason: despite the difference 
among the actions represented in Figure 1, competent 
speakers can indicate whatever instance of each prototype 
as “an instance of what we mean by take”. This cannot be 
the case with abstract meaning, which undergoes to 
specific use conditions. For instance, no English speaker 
will identify the following WordNet synset as a prototypic 
instance of what we mean by take: 
 

S: (v) assume, acquire, adopt, take on, take (take on a 

certain form, attribute, or aspect) "His voice took on a 

sad tone"; "The story took a new turn"; "he adopted an 

air of superiority"; "She assumed strange manners"; 

                                                           
1 Freely accessible at http://www.imagact.it/ 

"The gods assume human or animal form in these 

fables". 

In parallel, this concept cannot freely extend to other 
entities of the same semantic type: even if she took an air 
of superiority works fine, the sentences she took a bad 
habit and he took the gambling problem are not 
acceptable.  
Moreover, if we put the question regarding the referential 
variation of a verbal entry to the cross-linguistic level, we 
can easily see that each language parses the continuum of 
action in its own way (Majid et al., 2008; Kopecka and 
Narasimhan, 2012).  
For instance, the Japanese verb toru (取る), which 
roughly corresponds to the concept of taking, shows 
productive differences when compared with the variation 
of to take. In brief, toru is not applicable to the action of 
bringing something or someone to somewhere (for which 
Japanese uses the verb yoseru, 寄せる) nor to the simple 
action of grasping (tsukamu, 掴む). Conversely, to take is 
not applicable when catching something, which is a 
frequent use of toru (e.g. Mami ga boru wo toru 真美が
ボールを取る; En. Mary catches the ball). Moreover, 
toru can be applied to a larger set of events in which 
something is removed (see the examples in Figure 2). 
To sum up: action concepts are not determined neither in 
language nor in cognition in general; action verbs 
correspond to linguistic concepts, able to refer to more 
than one cognitive entity; each language categorizes 
actions in its own way.  
In order to manage this complexity, IMAGACT has 
adopted a flexible approach to categorization which 
allows for different levels of action concepts, namely 
prototypical Scenes, Action Types, and Metacategories. 

1.2 Scenes as prototypes for action concepts  

The development of Scenes is the final step of the 
IMAGACT ontology-building process. Up to that point 
this process has been developed through the manual 
annotation and classification of action verbs retrieved 
from large spoken corpora of Italian and English (for a 
detailed account of this procedure, see Moneglia et al., 
2012a; Moneglia et al., 2012b). In the Scene creation step, 
action classes are demarcated on the basis of semantic 
differentials between the verbs. Each action class is then 
linguistically motivated by the presence of a unique set of 
Italian-English verbs that can be used to refer to it. 
To this end, IMAGACT made use of systematically 
annotated Local Equivalence phenomenon, i.e. the 
possibility that different verbs, with different meanings, 
refer to the same action class (we will elaborate on this in 
Section 2). 
For instance, if someone takes something off the floor, we 
could also say that someone picks something up: this 
means that between to take and to pick up there is a Local 
Equivalence in this specific field of application. On the 
contrary, this relation is not valid for the action described 
by the sentence someone takes something from a (high) 
shelf, which is not a possible extension of the verb to pick 
up. Since we can apply both of these verbs to the first 
event, but only to take to the second one, we have 
discovered a linguistic differential between these two 
action classes: this fact led to the production of two 
different Scenes. 

Figure 2: Differences between to take (EN) and toru (JP) 

in the REMOVAL semantic field 
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This procedure ensures a good definition of action 
identification, which cannot be only function of the verb 
thematic structures (as in VerbNet; Kipper-Schuler, 
2006). For instance, the sentences he takes/get the water, 
he takes/grasp the handle and he takes the glass show the 
same thematic structure, but refer to different actions, as 
the differential in Local Equivalence testifies. 
Finally, a prototypical action has been chosen for each 
class, and represented by a recorded video or 3D 
animation. The IMAGACT database contains 1,010 
Scenes, which constitute the basic entities of reference of 
the action ontology, linked primarily to the English and 
Italian verbs considered in the annotation (more than 500 
for each language). After this bootstrapping process, the 
ontology was extended to many other languages

2
 via 

competence judgments given by native speakers for each 
Scene

3
 (Brown et al., 2014; Pan, 2016). 

This way, the set of Scenes to which a verb is connected 
is, in fact, a sampling of the unlimited possible actions 
referred to by that verb. Moreover, the IMAGACT 
methodology ensures this sampling to be representative of 
the whole semantic variation of each verb.  
Aside from all this, the problem of the identification and 
formalization of the action concepts still remains. A great 
number of linguistic differentials may occur within the 
range of the most general action verbs, which are also 
some of the most frequently occurring; for example, the 
verb to take refers to more than 100 IMAGACT Scenes. 
Table 1 reports the number of verbs connected to the 
Scenes. In order to have a readable picture, 5 groups have 
been identified with respect to the verb generality degree: 
verbs connected to more than 30 Scenes (i.e. very general 
verbs, that can be used to refer a wide variety of different 
actions), to 11-30 Scenes, to 5-10 Scenes, to 2-4 Scenes, 
and to 1 Scene only (i.e. very specific verbs). Values are 
reported in percentage on the total number of the 
annotated verbs of each language

4
. 

 

 >30 s. 11-30 s. 5-10 s. 2-4 s. 1 s. 

Arab 0.7% 5.7% 16.1% 38.5% 39.0% 

Chinese 0.0% 0.2% 1.9% 19.3% 78.5% 

Danish 0.2% 3.3% 8.8% 27.7% 60.1% 

English 1.3% 5.4% 17.7% 40.1% 35.6% 

German 0.0% 2.2% 6.3% 30.0% 61.5% 

Hindi 0.4% 3.3% 7.2% 24.4% 64.6% 

Italian 1.1% 5.6% 18.0% 37.4% 37.9% 

Japanese 0.0% 2.1% 8.7% 28.6% 60.6% 

Polish 0.0% 1.6% 10.0% 32.0% 56.4% 

Portuguese 1.1% 5.8% 10.8% 30.1% 52.2% 

Serbian 0.2% 2.5% 8.3% 30.6% 58.4% 

Spanish 1.1% 5.8% 10.9% 33.0% 49.2% 

Table 1: Percentage of verbs linked to the Scenes 

                                                           
2 A further 10 languages are completely mapped (see Tables 1 

and 2) and 16 are under development. 
3 The competence judgments were recorded through a dedicated 

web interface. The interface shows the native speaker a scene 

and they are asked to answer the question: how can you say this 

action in your language? 
4 The number of annotated verbs is very different among the 

languages, from a minimum of 414 (Chinese) to a maximum of 

1193 (Polish): this depends on linguistic differences among 

languages and not on the partial status of the annotation work, 

that is completed for these 12 languages. 

A clearer picture of  this phenomenon is shown in Table 
2, reporting the percentage of verb-scene relations; it can 
be read as a measure of the impact that general vs. non-
general verbs have in action categorization for each 
language. For example, according to Table 1, English 
verbs that can be considered very general are 1.3% of the 
annotated verbs, but they are involved in 16.8% of the 
whole set of verb-scene English relations (Table 2). 
 

 >30 s. 11-30 s. 5-10 s. 2-4 s. 1 s. 

Arab 10.6% 23.6% 29.7% 26.0% 10.0% 

Chinese 0.0% 3.3% 9.1% 33.6% 54.0% 

Danish 2.2% 22.1% 22.9% 28.8% 24.1% 

English 16.8% 20.9% 28.8% 25.1% 8.5% 

German 0.0% 17.2% 19.5% 34.3% 29.0% 

Hindi 5.8% 21.1% 20.6% 25.4% 27.1% 

Italian 14.1% 23.5% 29.3% 23.8% 9.3% 

Japanese 0.0% 14.7% 25.6% 33.0% 26.7% 

Polish 0.0% 9.9% 28.7% 36.3% 25.1% 

Portuguese 17.1% 26.6% 20.0% 21.8% 14.4% 

Serbian 4.4% 15.5% 22.8% 33.3% 24.1% 

Spanish 16.8% 26.6% 19.5% 23.9% 13.3% 

Table 2: Percentage of verb-scene relations 
 
Tables 1 and 2 clearly show that different languages adopt 
different lexicalization strategies to refer to the action 
universe. For instance, general verbs are preeminent in 
romance languages and in English (the impact of verbs 
linked to more than 10 Scenes is above 35%), while 
Chinese has the lowest presence of general verbs and the 
highest impact of verbs connected to only one Scene 
(54%). 

1.3 Higher levels of conceptualization: Types 
and Metacategories 

In order to identify higher level action concepts within the 
broad range of prototypes representing a verb’s variation 
(e.g. the ones in Figure 1), we need to make clusters of 
conceptually similar Scenes. This step is also needed to 
give a cognitively plausible account of their semantic 
variation with a reasonable level of granularity. 
Similarity judgments among Scenes could help to gather 
action classes into broader sets, but how is this possible in 
practice? Moreover, verb semantics strongly influences 
these similarity judgments: even if two action classes 
show a linguistic differentials, they can appear 
conceptually similar if we look at them from the 
perspective of a very general verb. For instance, the two 
above-mentioned actions of taking something off the floor 
and taking something from a shelf can be considered 
within the same, wider, action concept if we look at them 
from the perspective of the verb to take, in which case the 
linguistic differential of to pick up is somewhat irrelevant.  
Action Types in IMAGACT are defined as action 
concepts within the semantic variation of a verb. The 
creation of Types was performed independently of each 
other in the Italian and English corpora by mother tongue 
annotators through a corpus-driven process of associating 
similar actions. The set of Types for each verb is in fact a 
segmentation of its semantic variation where each Type is 
represented in the IMAGACT ontology as a clustering of 
Scenes. 
At a higher level of conceptualization, the numerous 
actions covered by IMAGACT have been gathered into 9 
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Metacategories, characterized as typical of human 
categorizations of action. These metacategories are 
ordered according to criteria that take into account the 
informative focus of the action, as shown in Table 3. 
In short, within the IMAGACT framework each action 
can be categorized in three ways: a) belonging to an 
action class represented by a Scene and linked to different 
verbs (in various languages); b) belonging to different 
Action Types; c) belonging to one (or in some cases two) 
Metacategory. Scenes, Action Types and Metacategories 
thus constitute conceptualization options with differing 
levels of granularity. 
 

AGENT 

perspective 

AGENT-THEME 

relation 

THEME-

DESTINATION 

relation 

Actions referring 

to facial 

expressions 

Modification of 

the OBJECT 

Change of 

location of the 

OBJECT 

Actions referring 

to the body 

Deterioration of 

the OBJECT 

Setting relations 

among OBJECTS 

Movement in 

space 

Force on the 

OBJECT 

Actions in inter-

subjective space 

Table 3: Action Metacategories 

2. The Role of Local Equivalence 

As we already said, the main problem for the linguistic 
annotation of action concepts, both in language and scene 
datasets, is the identification of the entities that should 
constitute the reference points in the ontology of actions.  
In this section and the subsequent ones we will show 
(abstracting away from the concrete implementation of 
these concepts in the IMAGACT resource) how the Local 
Equivalence can be exploited as a powerful annotation 
tool for action identification.  
Insofar as one verb may refer to many actions, each action 

may also be identified through various lexical alternatives. 
We called this property Local Equivalence, since it is 
valid only within certain local application of the verbs, 
and it is not a property belonging to their (general) 
meaning. Local Equivalence, then, associated with the 
productivity of action concepts, can be used to reduce the 
underdetermination and the granularity of action concepts. 
Looking at the variation of to take, almost every action 
prototype features one or more Local Equivalence 
relations with other action verbs, e.g. to extract, to 
receive, to remove, to bring, to lead, to grasp. Figure 3 
shows a snapshot of the referential variation of the verb to 
take, re-organized in consideration of the abovementioned 
equivalences. These equivalences constitute explicit 
differences between each action concept prototype and the 
others, or, in another sense, a restriction of its boundaries.  
The action concept grouping the scenes in the top left 
corner of the figure (labeled as remove) is split from the 
one on the right side (labeled as bring) because the former 
holds an equivalence between to take and to remove, 
while the latter demonstrates the equivalence between to 
take and to bring. 
The parsing of the action continuum into a discrete set of 
ontological entities can be further objectified by crossing 
the data of the linguistic categorization. When two 
different action verbs demonstrate the same event type, 
then that event type should be somehow considered as an 
identifiable action concept. Local Equivalence provides 
for the parsing of action concepts as they are referred to in 
different languages. 
Once the variation and differentials are identified, the 
action concepts can be modelled and generalizations 
obtained. As Figure 3 shows, the set of actions extended 
by to take fall into a restricted set of models roughly 
identified by their higher level Local Equivalences 
(specifically to remove, to bring, to receive, and to grasp). 
Within these broad concepts, we can refine the granularity 

Figure 3: The referential variation of to take organized using Local Equivalence relations. 
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of the conceptualization using more specific equivalences 
(e.g. those with the verbs to extract, to pick or to detach).  
This step opens up the path to identifying how languages 
vary in segmenting the action universe, as we have seen 
for toru in Japanese, whose range of variation shows an 
intersection with English that is observable through 
comparison. 
With regard to hierarchical relations among action 
concepts, the Local Equivalences specify how lower-level 
and higher-level concepts are organized in the conceptual 
structure and how cross-categorization phenomena 
characterize the hierarchy. In Figure 3, for instance, 
taking/removing and taking/bringing events correspond to 
two hierarchies, which may intersect with moving and 
giving type events. 
This framework has been applied extensively in 
IMAGACT for analyzing action verbs in many languages.  
Figure 4 shows the Local-Equivalence-based grouping of 
action class prototypes referred to by the general verb to 
put. Nevertheless, the framework we described asks for a 
stricter definition of Local Equivalence relations: how and 
why can two verbs extend to the same action concept? 
What are the limits of the application of Local 
Equivalence for the ends of action identification? 
In the following Sections, we will try to disentangle the 
different phenomena underlying the observation of Local 
Equivalences, distinguishing among them with respect to 
their usability in the complex task of action concept 
identification. 

3. Local Equivalence as a Function of 
Semantic Properties 

Local Equivalence can be a function of verb semantics. 
Let’s consider Figure 5, which is one of the prototypes in 
the variation of to hang. In that prototype, as in almost all 
prototypes in the variation, to put can also be applied. As 
a matter of fact, a competent speaker of English may refer 
to the event with both the sentences John hangs the hat on 
the hook and John puts the hat on the hook. 

The reason for this equivalence relies on semantic factors, 
and it is not a result of occasional and pragmatic 
circumstances. Very roughly speaking, one could say that 
both actions (to put and to hang) have the same GOAL of 
giving a LOCATION to the hat (i.e. to collocate) and for this 
reason the two predicates record a Local Equivalence 
relation for these kinds of events. 
 

 
Figure 5: John hangs/puts the hat on the hook 

http://bit.ly/2HSk9Du 
 
It should be clear that the Local Equivalence relation 
between to hang and to put with respect to this action 
class does not imply that the two abovementioned 
sentences (and verbs) have the same meaning. While the 
first one (containing the verb to hang) specifies the 
MANNER in which the hat is placed on the hook (i.e. it 
encodes a feature of the action’s RESULTING STATE), the 
second sentence (with to put) does not: it simply specifies 
the LOCATION of the THEME. This is the reason why we do 
not treat Local Equivalence as a synonymy relation

5
. No 

synonymy occurs: quite simply, either verb may be 
substituted into the sentence maintaining the same 
reference, but not the same meaning (Frege, 1892).  
The referential equivalence between the verbs to put and 
to hang is not restricted to the event represented in Figure 
5, but instead extends to any action of the same class. 
Generally, whenever an AGENT places something in a 
LOCATION and its RESULTING STATE is “suspended”, we 
can use both to put and to hang to refer to that action. 

                                                           
5 Therefore, Local Equivalence relations are not suitable for 

creating synsets in a WordNet-like scenario.  

Figure 4: The referential variation of to put organized using Local Equivalence relations. 
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More specifically, the possibility of applying the verb to 
put to this event type arises for two general reasons: i) if 
something hangs, then it must have a definite LOCATION 
from which it hangs; ii) an OBJECT can be considered a 
LOCATION at the conceptual level (see, for instance, 
Jackendoff, 1983). This means that, in this case, Local 
Equivalence is a productive relation. 
Being productive for semantic reasons, Local Equivalence 
determines the identification of an action concept and 
distinguishes it from the other fields of application of both 
verbs where this specific relation does not occur. The 
action concept identified constitutes a conceptual entity 
through which we can categorize the actions falling within 
the extensional variation  of to put. 
Within this variation, it’s possible to identify a set of 
troponymic concepts that are based on the quality of the 
RESULTING STATE of the THEME, as the ones represented 
in Figures 5, 6, and 7. In all of these cases we have a 
specific Local Equivalence (respectively to put/to hang; to 
put/to lay; to put/to lean) that is productive and relies on 
semantic factors. This fact presents a linguistic motivation 
for categorizing these events as three different action 
concepts to which we can refer with to put. 
It’s important to stress that these relations between verbs 
exist only locally and cannot be extended to a more 
general lexical level. The LOCATION of the THEME, for 
example, occurs in almost all variations of to hang, but 
the feature “reaching a LOCATION” is not strictly necessary 
for the eventualities in the extension of this verb. In 
particular, to hang also records interpretations in which no 
locative event occurs, like Mary hangs her head in Figure 
8. Similarly, there are many instances of putting events 
where the RESULTING STATE is not “suspended”, as we see 
for the examples in Figures 6 and 7. 
 

 
Figure 6: Mary puts/lays the book on the table 

http://bit.ly/2FcaKb4 
 

 

Figure 7: Mary puts/leans the broom against the wall  
http://bit.ly/2FB0QOe 

 

 
Figure 8: Mary hangs her head 

http://bit.ly/2GReR9P 

Once again, we have to underline that Local Equivalence 
is properly local because it does not allow the induction of 
entailments or other semantic relations at a lexical level: 
general statements like if I put then I hang or if I hang 
than I put are false. Instead, a relation between verbs is 
valid within the scope of a specific, identifiable action 
concept. 

4. Local Equivalence as a Function of 
Productive Pragmatic Properties 

Local Equivalence relations may depend on pragmatic 
factors only, but despite this fact their identification can 
still have huge consequences for the definition of action 
concepts. Let’s consider the relation between the concepts 
of taking and removing. There is nothing in the meaning 
of to take which refers to the concept of DISPLACEMENT. 
The GOAL of to take has something to do with “getting 
something in the AGENT’s control”, and does not refer to 
“moving something from its previous LOCATION”. In other 
words, it is not possible to predicate the action of 
removing something from its position with to take.  
However, looking at the events in which to take applies 
we see that, for many actions falling within its variation, 
when the AGENT takes the OBJECT under his control, the 
OBJECT also loses its original LOCATION (see Figure 9). 
Interestingly, this does not happen in cases where to take 
is equivalent to to grasp (Figure 10) or to receive. 
 

 
Figure 9: John takes/removes the cup from the shelf  

http://bit.ly/1eoMuOW 
 
By consequence, to take records a Local Equivalence 
relation with to remove. This equivalence does not occur 
by chance, and is a direct consequence of the following 
pragmatic circumstance: if we get something in our 
possession, this causes the DISPLACEMENT of the object. In 
other words, this correlation is pragmatic, but not 
occasional, and corresponds to the systematic equivalence 
of the two verbs in most of the semantic variations of to 
take.  
The consequences of the annotation of this Local 
Equivalence in defining the identity of the set of action 
concepts which fall in the variation of to take are 
important. The property of DISPLACEMENT and the parallel 
Local Equivalence relation with to remove is a relevant 
feature of certain action concepts falling under its 
variation and is not represented in the meaning of the 
verb.  
This relevance is provable through similarity judgments: 
if the equivalence is lost, then the action is perceived as 
belonging to a different class. For example, if the AGENT 
reaches for a cup and grasps it without moving it, the 
action falls into the action type of grasping, represented in 
Figure 10. In the opposite case, if the AGENT in Figure 10 
grasps the bar and removes it from the door, the action is 
judged as similar to taking the cup. 
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The pragmatic aspect of OBJECT DISPLACEMENT is a 
differential feature for a set of action concepts in the 
variation of to take, though it is not a semantic feature of 
the language concept. 
 

 
Figure 10: John takes/grasps the handle  

http://bit.ly/1ftSeCC 

5. Local Equivalence and Co-Occurrence 
for Different Actions  

Interpersonal activities are relevant to human 
categorization and they constitute one of the basic stages 
in the cognitive development of the child (Tomasello 
2009). Events that are the product of these activities are 
by necessity composed of various synchronous actions 
performed by the participants. Therefore, the verbs 
referring to those activities end up being equivalent for the 
identification of that event. IMAGACT records these 
actions under one specific action Metacategory (see Table 
3). For instance, the verb to take, when referring to a 
frame dealing with intersubjective activity, specifies an 
action type in which taking something is synchronous 
with the activity of receiving the object, and with an act of 
giving performed by the second actor in the 
intersubjective action. In this kind of event, the two actors 
co-operate and their activities are both necessary and 
synchronous with the onset of the concept. 
The Local Equivalence relation between the two 
properties (taking/receiving and giving) is pragmatic, and 
is not represented in the meaning of to take, which does 
not require intersubjectivity. However, reference to this 
property is necessary to identify the variation of the 
referred action concepts. Specifically, if we want to 
distinguish Mary takes the cup from the shell from Mary 
takes the cup from John (who gives it to Mary), the 
identification of the Local Equivalence between to take 
and to receive constitutes a necessary annotation. 

6. Nonproductive Pragmatic Equivalences 

The onset of Local Equivalence relations that follow from 
pragmatic factors is pretty frequent when working with 
prototypes with the aim of representing action concepts, 
however in many cases Local Equivalences are not 
relevant for the identification of these concepts. 
For instance, among the action types in which to take is 
equivalent to the verb to lead there is the event 
represented in Figure 11, in which a Local Equivalent 
relation with the verb to guide is productive. Beyond this 
equivalence, which distinguishes this action concept from 
the others in the variation of to take, the prototype also 
represents the synchronous action of crossing the street. 
This property is prominent in the prototype, and the two 
concepts (taking/leading/guiding and crossing) are also 
frequently associated in the world when people need to be 
guided, since crossing is a difficult task for them. 

Therefore, the Local Equivalence among these 4 verbs is 
noticeable in that prototype, and the event can be properly 
described with both the sentences John takes/leads/guides 
the blind man across the street and John and the blind 
man cross the street. 
 

 
Figure 11. John takes/leads/guides the blind man across 

the street; John and the blind man cross the street 
http://bit.ly/X9aoZj 

 
The event is therefore an extension of both to guide and to 
cross, but it is worth noting that the Local Equivalence 
provided by to cross does not contribute to the 
identification of this action concept. Indeed, a 
modification to the prototype which discards the property 
of crossing (e.g. the blind man is guided along a street) 
does not change the action type. In other words, the Local 
Equivalence between to take and to cross is not 
productive, while the one between to take, to guide and to 
lead is productive and identifies a concept within the 
variation of to take. More concisely, the property of 
crossing does not underly the concept of guiding and does 
not constitute a proper troponymic concept. 

7. Concluding remarks 

The problem of identifying action concepts can be (at 
least partially) solved through the annotation of the 
systematic co-referential properties of action verbs. 
Indeed, Local Equivalence phenomena delimit specific 
sectors in the action continuum, meaning that action 
concepts may be properly determined starting from 
linguistic categorizations. 
Nevertheless, the annotation of Local Equivalences with 
the aim of identifying action concepts requires an 
evaluation of the productivity of the relation. Two actions 
are of the same type only if the concept extends in the 
same way, i.e. if they record the same productivity. When 
this productivity is missing the Local Equivalence is not 
essential and exists just as an accidental pragmatic fact. 
This aspect yields an essential contribution to the 
annotation of action from a linguistic perspective: without 
considering the presence of Local Equivalence relations 
action concepts remain vague and strongly 
underdetermined and their categorization does not find 
adequate points of anchorage. 
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Abstract
We present an explorative study for the (semi-)automatic categorisation of actions in Dutch multimodal first aid instructions,
where the actions needed to successfully execute the procedure in question are presented verbally and in pictures. We start
with the categorisation of verbalised actions and expect that this will later facilitate the identification of those actions in the
pictures, which is known to be hard. Comparisons of and user-based experimentation with the verbal and visual representations
will allow us to determine the effectiveness of picture-text combinations and will eventually support the automatic generation
of multimodal documents. We used Natural Language Processing tools to identify and categorise 2,388 verbs in a corpus of 78
multimodal instructions. We show that the main action structure of an instruction can be retrieved through verb identification
using the Alpino parser followed by a manual selection operation. The selected main action verbs were subsequently
generalised and categorised with the use of Cornetto, a lexical resource that combines a Dutch Wordnet and a Dutch Reference
Lexicon. Results show that these tools are useful but also have limitations which make human intervention essential to guide
an accurate categorisation of actions in multimodal instructions.

Keywords: instructions, actions, verbs, categorisation, task structure

1. Introduction

Multimodal instructions (MIs) consist of pictures and
text that present a sequence of actions that users of
these documents need to carry out to perform a par-
ticular procedural task. It is not known exactly which
combinations of pictures and text are most effective to
present such a procedure in a context of use (Schriver,
1997; Aouladomar, 2005; Bateman, 2014). We advo-
cate the combined use of corpus studies and user stud-
ies to determine the effectiveness of picture-text combi-
nations in order to evaluate and (in the future) automat-
ically generate multimodal documents (Van der Sluis et
al., 2017). Our previous work on annotation of MI cor-
pora shows how pictures, text and their relations in MIs
contribute to the presentation of the actions that need
to be carried out to perform a task. For instance, our
corpus study in the cooking domain (Van der Sluis et
al., 2016b) revealed that even in MIs with text+picture
pairs for each step of the procedure, many actions (here
56% of the 452 actions in 30 MIs) are presented only
textually and–unsurprisingly–that picture-only presen-
tations are rare (here 7%). When an action is presented
in both, text and picture (here 37% of the actions), the
information presented is not always the same. This
was further explored in a study in the first aid domain
(Van der Sluis et al., 2017), where we found that pic-
tures in MIs may present an action-in-progress, but also
the result of an action. In the latter case the action it-
self is described in the text (e.g., ‘pick up the tweez-
ers’), while the picture presents the result (depiction of
a hand holding tweezers).
In this paper we present our efforts to automatically
identify and categorise the actions presented in the text
of a corpus of multimodal first aid instructions. Ar-
guably, a categorisation of actions in text will inform

the identification of those same actions (and/or their
results) in pictures (Ghanimifard and Dobnik, 2017;
Vedantam et al., 2015). While automatic identification
of depicted objects is well studied, the identification of
depicted actions is known to be more difficult (Jensen
and Lulla, 1987; Stanfield and Zwaan, 2001; Socher et
al., 2014; Karpathy and Fei-Fei, 2015). Ultimately the
identification of actions in pictures can help us to deter-
mine the type and content of the picture-text relations
in multimodal documents. Our research question is for-
mulated as follows: How can the constituent actions in
Dutch first aid procedures be identified and categorised
by (semi-)automatic natural language analysis, so that
the resulting action categories can be used to identify
picture-text relations in multimodal instructions?
Automatically acquiring procedural knowledge from
instructions without any domain knowledge is chal-
lenging (Zhang et al., 2012). Inevitably, some prepro-
cessing should be conducted because human instruc-
tions naturally contain imperfections such as ambigu-
ities, omissions and errors. Most of all, discovery of
the main action structure requires proper processing
of mainly the verbs in instructions (Steehouder and
Van der Meij, 2005). Actions in instructions are often
represented by imperative verbs because instructions
are processed most effectively and efficiently if they
are presented in explicit and direct terms (Steehouder
and Karreman, 2000; Piwek and Beun, 2001). How-
ever, actions can also be represented with the use of a
gerund (as in ‘Drag the victim out of the danger zone
walking backwards.’), which often specifies the way in
which the action represented by the main action verb,
‘drag’, should be carried out. The texts in multimodal
instructions also include numerous actions that are not
a part of the main action structure, while the accom-
panying pictures usually visualise some or all of the
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main actions in the procedure. The additional actions
concern alternatives, contingencies, or cautionary ad-
vice, and are verbalised using modal verbs (e.g., ‘Small
children can just be turned on their side facing down-
ward.’), negations (e.g, ‘There should be no pressure on
the chest that can make breathing difficult.’), condition-
als (e.g., ‘If the victim wears glasses, take them off and
put them in a safe place.’) or warnings (e.g., ‘Pay close
attention to the victim.’). This paper presents a method
to identify and categorise the verbs that represent the
main action structure in MI texts as well as the results
of this method in a corpus of first aid instructions.

2. Method
2.1. Dataset Preparation
We selected 78 MIs from the annotated PAT corpus
(Van der Sluis et al., 2016a). They were published
in two editions of Het Oranje Kruis Boekje 20111 and
20162. Het Oranje Kruis3 is a Dutch organisation that
provides learning materials for first aid certification
trainings. The two editions of Het Oranje Kruis Boekje
overlap in terms of the tasks presented in them: 25
tasks appear in both editions (yielding 50 MIs), and 28
appear only in one edition. Preprocessing of the MIs
was relatively easy, because the MIs contain fewer im-
perfections compared to, for instance, MIs published
on the internet (often by unauthorised sources). MI
texts were augmented by adding periods at the end of
every title and every item in enumerated lists to al-
low automatic identification of sentences. In addition,
semicolons in the MI text were changed to colons to
avoid confusion with the delimiter used in our data
files. The 78 MIs include 1,342 sentences and 2,388
verbs in total.
Figure 1 and Figure 2 present two examples of MIs that
display how to place a victim in the recovery position, a
life-saving operation to prevent unconscious people to
choke in their own fluids. In short, the first aid helper
needs to kneel down on one side of the victim, place
the victim’s legs and arms in particular positions to al-
low turning the victim on his/her side. Subsequently,
the helper has to make sure that the victim’s head is
placed in such a way that the victim’s airway will stay
open. Then the victim’s breathing has to be checked at
regular time intervals. The pictures in both examples
display a number of actions in the procedural task that
are presented in the MI text (e.g., to place a victim’s
hand on the victim’s face, to bend the victim’s knee, to
turn the victim on his/her side, to position the victim’s
head). Moreover, the MI texts also present a number
of actions of which the results are visible in multiple

1Het Oranje Kruis (2011). Het Oranje Kruis Boekje, De
officiële handleiding voor eerste hulp. Thieme Meulenhoff,
Amersfoort. ISBN 9789006921717.

2Het Oranje Kruis (2016). Het Oranje Kruis Boekje, De
officiële handleiding voor eerste hulp. Thieme Meulenhoff,
Amersfoort. ISBN13 9789006410341.

3http://www.hetoranjekruis.nl/

Figure 1: MI911 Placing a victim in the recovery
position (Het Oranje Kruis Boekje, 2013).

Figure 2: Part of MI959 Placing a victim in the
recovery position (Het Oranje Kruis Boekje, 2016).

pictures (e.g., to kneel, to place an arm of the victim
sideways). For instance, in both MIs the first aid helper
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has already knelt in the first picture and stays on his
knees in the second picture. Also the outstretched left
arm is visible in multiple pictures in both MIs. We re-
fer to (Van der Sluis et al., 2017), where we also show
that in a tick removal instruction the presentation of
processes and results of actions differs between the MI
the text and the MI pictures. In this paper we present
a method to categorise actions in the MI text, to allow
the identification of actions and results of actions in MI
pictures and to specify text-picture relations in MIs.

2.2. Action Identification
To identify the syntactic segments and their hierarchi-
cal relations, the MI texts were processed using the
NLTK sent tokenizer (Bird, 2006). Per MI the re-
sulting sentences were parsed with the Alpino parser
(Van Noord and others, 2006) and a database was
created with the lemmas of the verbs that Alpino
identified; for each of the 2,388 verbs in the corpus
the database includes the lemmatized verb, the in-
dex of the MI and the index of the sentence in the
MI in which the verb occurs. The Alpino parser’s
errors (N=18) were manually resolved through re-
moval of nouns and nominalisations that were mis-
takenly tagged as verbs (i.e. five times ‘buikstoten’,
three times ‘kompressen’, twice ‘beademingshulpmid-
delen’ and once ‘weerkanten’, ‘rautekgrijpen’, ‘bloed-
hoesten’, ‘paniekaanvallen’, ‘sponzen’, ‘riltklapper-
tanden’, ‘bevriezingswonden’, ‘insectsteken’).
To exclude modalised, negated, or conditional ac-
tions and warnings in the MI texts we consulted the
Algemene Nederlandse Spraakkunst (General Dutch
Grammar) (Haeseryn et al., 1997)4 to generate a script
to perform a word-based search on the Alpino output.
Table 1 presents the features and words identified in
the 78 MIs as well as an overview of the 977 verbs
(40.9%) that were, as a result, excluded from further
analysis: 221 were modal verbs, 567 appeared in the
scope of a negation and 514 appeared within a condi-
tional context or as part of a warning. Note that these
categories are not mutually exclusive (e.g., ‘make sure
that you do not strain the arm’ contains a warning as
well as a negation). We kept 1,411 verbs that repre-
sented the main actions in the 78 MIs in our corpus.
Subsequently, an overall MI-lemma database was cre-
ated with 282 unique lemmas for these remaining 1,411
verbs.

2.3. Verb Generalisation
Cornetto (Vossen et al., 2013), a lexical resource that
combines a Dutch Wordnet and a Dutch Reference
Lexicon, was used to build a verb-hyperonym database
that listed all hyperonyms for each lemma in our MI-
lemma database. To categorise the verbs in the MI
texts, first the synset ID of the verb lemma in the
Cornetto 2.0 ID XML database was selected. Subse-
quently, the hyperonyms in the corresponding synset in

4http://ans.ruhosting.nl/

the Cornetto 2.0 synset XML database were retrieved.
It appeared that for more than a third of the lemmas in
the MI-lemma database (N=132) no hyperonyms ex-
isted in Cornetto 2.0. In addition, in 71 cases the re-
trieved Cornetto 2.0 hyperonyms did not fit the mean-
ing of the verbs used in a first aid context. Therefore
we manually consulted other sources to find appropri-
ate hyperonyms, i.e. the Cornetto Demo5 and the Van
Dale Dictionary6. In the case that none of these sources
provided an accurate hyperonym, the verb itself was
used as a hyperonym unless the verb contained a pre-
fix. In the latter case the prefix was stripped and the
nucleus of the verb was identified as the hyperonym.
For example: ‘doorduwen’ (to push through) became
‘duwen’ (to push). Table 2 presents the origin of the
92 hyperonyms retrieved for the 282 unique verbs in
our MI-lemma database. The 21 hyperonyms selected
for further analysis have a frequency > 1% and do not
include semantically weak verbs such as ‘zijn’ (to be),
‘gaan’ (to go), ‘hebben’ (to have), ‘komen’ (to come).
The Cornetto Demo was used to structure the 21 hyper-
onyms.

3. Results
The 21 hyperonyms subsume numerous verbs in our
dataset with only 78 instructive texts. The hyper-
onym with the highest frequency is ‘handelen’ (to do,
N=155), which fits a corpus with instructions well.
The verbs it subsumes vary in frequency: ‘laten’ (to
let, 34.2%), ‘doen’ (to do, 25,2%), ‘zorgen’ (to care,
21,9%), ‘overnemen’ (to pass, 5.8%, ‘helpen’ (to help,
3.9%), ‘herhalen’ (to repeat 2.6%), ‘uitvoeren’ (to ex-
ecute, 1.9%), ‘nemen’ (to take,1.3%), ‘gedragen’ (to
behave, 1.3%), ‘werken’ (to work, 0.6%), ‘verzorgen’
(take care of, 0.6%) and ‘steunen’ (to support, 0.6%).
Most hyperonyms typically include only two or three
frequently used verbs and a few less frequent verbs.
For instance, the hyperonym ‘plaatsen’ (to put, to
place, N=99) subsumes ‘leggen’ (to lay, 48%), ‘plaat-
sen’ (to place, 44.4%) and three other verbs that to-
gether appear only seven times (to lay down, to ap-
ply and to cross). Another example is ‘vastmaken’ (to
attach), which subsumes ‘aanleggen’ (to fit, 37.7%),
‘vastzetten’ (to fasten, 23%), ‘zetten’ (to set, 19.7%)
and six other verbs with a maximum frequency of 6.6%
(to clasp, to hook, to seize, to tie, to append, to at-
tach). An exception is ‘veranderen’ (to change, N=57),
which subsumes 21 verbs of which ‘worden’ (to be-
come, 29.8%), ‘vouwen’ (to fold, 12.3%) and ‘koelen’
(to cool, 12.3%) are the most frequently used.
The 21 hyperonyms were grouped into eight categories
based on their synsets included in the Cornetto Demo:
‘handelen’ (to do, N=155), ‘veranderen’ (to change,
N=57), ‘houden’ (to hold, to keep, N=32), ‘geven’
(to give, N=26), ‘voortbewegen’ (to propel, N=20),
‘onderzoeken’ (to investigate, N=20), ‘contacteren’ (to

5http://www.cltl.nl/results/demos/cornetto/
6http://www.vandale.nl/
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Feature Words Excluded Verbs
Modal verbs kunnen (can, N=161), moeten (should, N=30), 221 (9.3%)

mogen (may, N=10)
Explicit negation niet (not) 297 (12.4%)
Negation with ‘niet’ geen (none, N=70), niemand (no one, N=14), 96 (4.0%)

nooit (never, N=7), niets (nothing, N=5)
Other alleen (only, N=49), maar (but, N=30), 174 (7.3%)
negation zonder (without, N=28), minder (less, N=25),
element enkel (just, N=10), hoogstens (at most, N=4),

slechts (only, N=9), nauwelijks (barely, N=7),
pas (only just, N=4), weinig (few, N=4),
zelden (rare, N=2), moeilijk (hard, N=2)

Conditional als (if, N=226), wanneer (when, N=170), 408 (17.1%)
zolang (as long as, N=8), indien (if, N=8)

Warning voorkomen (to prevent, N=56), opletten (to pay attention, N=46), 106 (4.4%)
uitkijken (to watch out, N=4)

Excluded verbs 977 (40.9%)
Main verbs 1,411 (59.1%)
Total 2,388 (100%)

Table 1: Features and words used to identify modal verbs, negated actions, conditional actions and warnings in the parsed MI
texts and the number and percentages of excluded verbs.

Source Unique Verbs Total Nr. of Verbs
Cornetto 2.0 DB 127 (45%) 938 (66.5%)
Cornetto Demo 118 (41.8%) 365 (25.3%)
Van Dale 25 (8.9%) 83 (5.9%)
Prefix stripping 12 (4.3%) 25 (1.7%)
Total 282 (100%) 1,411 (100%)

Table 2: Hyperonym sources.

contact, N=18) and ‘schoonmaken’ (to clean, N=15).
Table 3 presents the categories and the hyperonyms in-
cluded in them, their frequencies, and some examples
from our corpus.

4. Discussion
We conclude that the constituent actions in Dutch first
aid instructions can be identified by the following pro-
cedure: (1) selection of the verbs from MIs, (2) exclu-
sion of modalised actions, negated actions, conditional
actions, and warnings, (3) selection of hyperonyms for
the remaining verbs and (4) abstraction from hyper-
onyms to synsets. In this procedure, existing tools to
automatically analyse the Dutch MI dataset are helpful,
but not sufficient. The research presented in this paper
was strongly dependent on natural language processing
(NLP) tools created for Dutch. These tools were not
entirely complete and reliable. In some cases output
was missing, in other cases the output was inappropri-
ate. As a consequence substantial manual support was
needed.
Although the Alpino parser is definitely useful to iden-
tify verbs, it was unable to retrieve all verbs in our
corpus. For instance, Alpino failed to recognise the
verb ‘inademen’ in the instruction ‘Adem normaal in
en plaats uw wijdgeopende mond goed sluitend over
de mond van het slachtoffer’ (MI915: Breathe in nor-

mally and place your widely opened mouth tightly on
the mouth of the victim). Conversely, some words in
our corpus were mistakenly tagged as verbs. Some-
times prefixes of separable verbs were not included in
the lemma of the verb. For example, Alpino tagged
the verb ‘plaatsnemen’ (to sit down; in MI950: ‘Neem
plaats achter het slachtoffer’ i.e. Sit down behind the
victim), as ‘nemen’ (to take), while the separately oc-
curing prefix ‘plaats’ is crucial to interpret the meaning
of the whole verb. Although in this case manual correc-
tion would have been possible, we did not bother with
it as our goal was to retrieve hyperonyms. Currently,
Alpino does not provide a repair strategy to manually
add or replace tags. Because Alpino does not provide
information about negations, conditions and warnings,
the exclusion of verbs that are not part of the main pro-
cedure in the instruction had to be done manually. We
chose an approach based on signalling words to dis-
cover verbs outside the main procedure of the instruc-
tion (see Table 1). Consequently, there is a risk that
some main action verbs were incorrectly excluded from
further analysis. Other features not included in Alpino
that might be useful to determine if a verb describes
a main action would be the recognition of causals to
identify reasons for doing something, verb tenses and
disjunctions.

Cornetto provided hyperonyms for about two thirds of
the lemma’s in our corpus. The remaining verbs were
manually tagged using other sources. Relations be-
tween the hyperonyms can be retrieved with the Cor-
netto Demo. Since one word can have multiple word
meanings, it can also have multiple hyperonyms. Be-
cause of that, a human annotator is still needed to se-
lect the most suitable hyperonym in a particular con-
text. While the selection of hyperonym and synset cate-
gories was executed and refined in close discussion be-
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Synset Categories Freq. MI-number and Translated Example
1. handelen (to do) 155 (11%) 903-Repeat these last steps until you are out of the danger zone.
2. veranderen (to change) 57 (4.0%) 987-Someone has immediately become seriously ill.

958-You take turns in resuscitating every 2 minutes.
2.1 vastmaken (to attach) 61 (4.3%) 933-Attach the bandage with adhesive plaster or a bandage clip.
2.2 bewerken (to manipulate) 28 (2.0%) 959-Prepare the breathing mask for use.
2.2.1 dekken (to cover) 17 (1.2%) 971-Then you cover the wound with a sterile bandage.
2.3 draaien (to turn) 31 (2.2%) 911-Place your hand on his forehead and tilt his head backwards.
2.4 brengen (to bring) 23 (1.6%) 980-Put a stifled victim in a half-sitting position and support him.
3. houden (to hold, to keep) 32 (2.5%) 979-Hold his head in the position in which you found it.

989-Keep clinging clothing wet.
4. geven (to give) 26 (1.8%) 973-This is how you give enough support without squeezing.
5. voortbewegen (to propel) 20 (1.6%) 951-Slide both your arms under the victim’s armpits.
5.1 verplaatsen (to move) 35 (2.5%) 902-Lift him by stretching your legs.
5.1.1 plaatsen (to put, to place) 99 (7.0%) 921-Place the CPR face shield on the victim’s face.
5.1.2 consumeren (to consume) 28 (2.0%) 988-Give a child something lukewarm with a lot of sugar to drink.
5.1.3 verwijderen (to remove) 22 (1.6%) 957-Remove any (medicine) plasters from the victim.
5.1.4 trekken (to pull) 25 (1.8%) 935-Carefully separate the eyelids with thumb and index finger.
5.1.5 duwen (to push) 38 (2.7%) 905-Push the victim on his side.
6. onderzoeken (to investigate) 20 (1.4%) 914-Judge his breathing and start resuscitating.
6.1 waarnemen (to observe) 32 (2.3%) 954-Moreover, the emergency officer on the phone will hear you.
6.1.1 zien (to see) 54 (3.8%) 911-Judge his breathing by looking, listening and feeling for 10 secs.
7. contacteren (to contact) 18 (1.3%) 982-Otherwise, call the GP’s emergency number or call the GP center.
8. schoonmaken (to clean) 15 (1.1%) 972-Rinse the victim’s eye for 15 minutes with lukewarm water.

Table 3: Eight hyperonyms categories with their synsets, frequencies and corpus examples translated from Dutch to English.

tween the authors of this paper, future research should
involve several annotators to allow reliability assess-
ments and improve the validity of the analysis.

5. Future Work
The eight main action categories that we derived from
the instructions by Het Oranje Kruis will be tested on
the other MIs in our corpus. The growing PAT MI cor-
pus (Van der Sluis et al., 2016a) currently contains 308
MIs with the same topics and tasks included in the ma-
terials from Het Oranje Kruis. The PAT corpus will be
made available for research purposes when ready. In
the future a thoroughly validated categorisation of first
aid actions may also be used to recognise first aid ac-
tions automatically (with the proviso that manual cu-
ration will be needed for a valid and complete cod-
ing). Moreover, this categorisation will facilitate par-
allel coding of the actions presented in the text and in
the pictures of the MIs. After the actions have been
matched, their textual and pictorial presentations can
be compared using (i) more detailed linguistic anal-
yses including aspect, modality, and adverbial speci-
fications of manner, and (ii) more fine-grained visual
analysis identifying postures, gaze, and the positions of
body parts of the depicted persons. Together with user
studies testing the effects of possible pairings, this will
eventually facilitate the automatic generation of effec-
tive picture-text relations in multimodal documents.
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Abstract
Annotation processes in the field of computational linguistics and digital humanities are usually carried out using two-dimensional
tools, whether web-based or not. They allow users to add annotations on a desktop using the familiar keyboard and mouse interfaces.
This imposes limitations on the way annotation objects are manipulated and interrelated. To overcome these limitations and to draw
on gestures and body movements as triggering actions of the annotation process, we introduce VANNOTATOR, a virtual system for
annotating linguistic and multimodal objects. Based on VR glasses and Unity3D, it allows for annotaing a wide range of homogeneous
and heterogeneous relations. We exemplify VANNOTATOR by example of annotating propositional content and carry out a comparative
study in which we evaluate VANNOTATOR in relation to WebAnno. Our evaluation shows that action-based annotations of textual and
multimodal objects as an alternative to classic 2D tools are within reach.

Keywords: Virtual reality, gesture-driven annotation, multimodal annotation objects

1. Introduction

Annotation processes in the field of computational linguis-
tics and digital humanities are usually carried out using
two-dimensional tools, whether web-based or not. They
allow users to add annotations on a desktop using the fa-
miliar keyboard and mouse interfaces. The visualization of
annotations is limited to an annotation area which is delim-
ited by a manageable number of windows. Within a single
window, relationships of annotation objects are graphically
visualized by connecting them to each other by means of
lines as an add-on to the 2D surface. This diagnosis also
includes tools for annotating multimodal objects (Cassidy
and Schmidt, 2017). Further, most of these tools do not
support collaboratively annotating the same document si-
multaneously – though there exist recent developments of
collaborative web-based tools (Biemann et al., 2017). Pop-
ular frameworks for linguistic annotation such as Atomic
(Druskat et al., 2014) or ANNIS (Chiarcos et al., 2008), re-
spectively, brat (Stenetorp et al., 2012) and WebAnno (de
Castilho et al., 2014) are partly sharing these limitations.
Brat, for example, is a web-based annotation framework
that allows different users to annotate a document simul-
taneously. All changes are made directly available to all
annotators. In contrast, WebAnno based on brat concen-
trates on parallel annotations where annotators cannot see
changes made by users sharing the same rights. Curators
can then compare and verify annotations of different users.
In this paper, we introduce VANNOTATOR, a 3D tool for
linguistic annotation to overcome these limits: (1) first and
foremost, VANNOTATOR provides a three-dimensional an-
notation area that allows annotators to orient themselves
within 3D scenes containing representations of natural ob-
jects (e.g., accessible buildings) and semiotic aggregates
(texts, images, etc.) to be annotated or interrelated. (2)
A basic principle of annotating by means of VANNOTA-
TOR is to manifest, trigger and control annotations with
gestures or body movements. In this way, natural ac-

tions (such as pointing or grasping) are evaluated to per-
form annotation subprocesses. (3) In addition, according to
the strict 3D setting of VANNOTATOR, discourse referents
are no longer implicitly represented. Thus, unlike Web-
Anno, where anaphora have to be linked to most recently
preceding expressions of identical reference (leading to
monomodal line graphs), discourse referents are now repre-
sented as manipulable 3D objects that are directly linked to
any of their mentions (generating multimodal star graphs
connecting textual manifestations and 3D representations
of discourse referents). (4) VANNOTATOR allows for col-
laboratively annotating documents so that different annota-
tors can interact within the same annotation space, whether
remotely or not, though not yet simultaneously. (5) The
third dimension allows for the simultaneous use of many
different tools for annotating a wide variety of multimedia
content without affecting clarity. In contrast, 2D interfaces
that allow text passages to be linked simultaneously with
video segments, positions in 3D models, etc. quickly be-
come confusing. The reason for this is that in the latter
case the third dimension cannot be used to represent rela-
tions of information objects. In other words, 3D interfaces
are not subject to the same loss of information as 2D inter-
faces when representing relational information.
In this paper, we demonstrate the basic functionality of
VANNOTATOR by focusing on its underlying data model,
its gestural interface and also present a comparative evalu-
ation in the area of anaphora resolution. The paper is or-
ganized as follows: Section 2. gives a short overview of
related work in the area of VR (Virtual Reality) based sys-
tems. In Section 3. we briefly sketch the architecture of
VANNOTATOR and its gestural interface. Section 4. pro-
vides a comparative evaluation. Finally, Section 5. gives a
conclusion and an outlook on future work.

2. Related Work
Virtual environments have long been popular for visualiz-
ing and annotating objects, but not primarily in the NLP
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Figure 1: Sentences (blue boxes), tokens (grey), annotation cubes (green: complete annotations, red: incomplete ones, grey:
stored annotations) and lines representing relations between annotations. A simple keyboard is visualized at the bottom.

domain. (Bellgardt et al., 2017) describe general usage sce-
narios of VR systems addressing actions of sitting, standing
or walking. (Cliquet et al., 2017) even envision scenarios
in which textual aggregates are accompanied with share-
able experiences in the virtual reality – a scenario also ad-
dressed by VANNOTATOR. Older projects are, for example,
Empire 3D, a collaborative semantic annotation tool for vir-
tual environments with a focus on architectural history (Ab-
bott et al., 2011). Based on OpenScreneGraph, Empire 3D
visualizes database-supported information about buildings
and locations. Another tool is Croquet (Kadobayashi et al.,
2005); it allows for modeling and annotating scenes that
are finally represented as 3D wikis. Croquet is followed by
Open Cobalt.1 Closer to the area of NLP is the annotation
system of (Clergeaud and Guitton, 2017), a virtual environ-
ment that allows for annotating documents using a virtual
notepad. Inserting multimedia content is also possible with
this system.
To the best of our knowledge, there is currently no frame-
work of linguistic or even multimodal annotation in vir-
tual reality that meets the scenario of VANNOTATOR as de-
scribed in Section 1.

3. VANNOTATOR
3.1. Annotation Space
Based on Stolperwege (Mehler et al., 2017), which aims
to transform processes of documenting historical processes
into virtual environments, VANNOTATOR has been de-
signed for desktop systems and therefore supports the most
common VR glasses2 in conjunction with their motion con-
trollers. The underlying environment is Unity3D, which al-
lows for instantiating VANNOTATOR on different platforms.

1https://sites.google.com/site/
opencobaltproject/

2Oculus Rift and HTC Vive.

Initially, VANNOTATOR gives annotators access to empty
virtual spaces (work environments) providing flexible ar-
eas for visualizing and annotating linguistic and multimedia
objects. Figure 1 illustrates the annotation of a text segment
(sentence), its tokenization, specification of discourse ref-
erents and their relations forming a graphical representation
of (phoric) discourse structure. In this example, the anno-
tator has extracted several text segments from the VANNO-
TATOR browser (in our example displaying a Wikipedia ar-
ticle) and arranged them in circular order. In this way, she
or he can move between the segments to annotate them.
The major instrument for interacting with annotation ob-
jects are virtual hands (see Figure 1) currently realized by
means of the motion controllers. Walking or moving is also
performed by means of the controllers. In this way, VAN-
NOTATOR enables teleportation as well as stepless and real
movements.

3.2. Data Model, Annotation Scheme and UIMA
Database Interface

The integrity of VANNOTATOR-based annotations is eval-
uated with respect to the data model (see Figure 3) of the
Stolperwege project. This joint project of historians and
computer scientists aims at semi-automatically document-
ing the biographies of victims of Nazism. To this end, it
includes a data model for modeling propositional text con-
tent: currently, propositions are modeled as logical expres-
sions of predicate argument structures where arguments
manifest semantic roles in the sense of role labeling sys-
tems. Arguments (see Figure 3) form a superclass of dis-
course referents (DR) modeled as virtual representations of
persons, times, places or positions and events (being de-
fined as sets of propositions in the sense of situation se-
mantics) as well as multimedia objects (e.g., accessible an-
imations of buildings or images). Beyond that, a DR can
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Figure 2: Incompletely annotated DR (red). The menu allows for generating a new DR using the touch gesture and to
connect it to other DRs regarding the focal attribute.
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Figure 3: A subset of the data model of VANNOTATOR.

be introduced as an aggregation of more elementary DRs.
In this way, for example, a group of persons can be defined
as a candidate referent of an anaphoric plural expression.
From a graph-theoretical point of view, homogeneous n-
ary relations can be annotated as well as hyperedges man-
ifesting heterogeneous relations. When the user introduces
a new DR, the system visually represents it as a so-called
annotation cube whose annotation slots are defined by the
corresponding entity’s (intra- or interrelational) attributes.
VANNOTATOR supports the annotation process by provid-
ing visual feedback in terms of green (complete) and red
(incomplete) cubes. In this way, VANNOTATOR can also be
seen as virtual interface to relational databases.
We mapped the relational data model of VANNOTATOR
onto UIMA Type System Descriptor so that the resulting
annotation scheme and annotation objects can be managed
by means of a UIMA-based database, that is, the so-called
UIMA Database Interface of (Abrami and Mehler, 2018).

The database is accessible through a RESTful web service.
Any DR managed in this way can be linked to multi-
media content or external information objects (extracted
from Wikidata or Wikipedia). Further, DRs can be reused
across multiple annotation scenarios including different
texts. Each DR is uniquely identifiable via its URI being
visualized as a corresponding cube. Any such cube can be
manipulated using a range of different gestures.

3.3. Gestural Interface
The annotation process is driven by means of the following
gestures:

Grab Pick up and move an element to any position.

Point Teleport to any position in the virtual environment
or select a DR.

Touch Touching a DR with the point gesture either initi-
ates the annotation process or establishes a relation-
ship between this source node and a target node to be
selected. As a result of this, a line is drawn between
both DRs. Touching different tokens with both index
fingers creates a text area between them.

Twist Grabbing and rotating a line manifesting a relation
of DRs removes it.

Pull apart By means of this gesture, the characteristic ac-
tion connected to a DR is executed. For a DR of type
URI, this means, for example, that a window is opened
in VANNOTATOR’s browser to display the content of
this resource.

Throw over the shoulder This action disables or resets
the DR.

We now describe how to select, visualize and annotate text
taken from VANNOTATOR’s internal browser using these
gestures. Note that this browser serves as an interface to in-
troduce additional content, images or URI from outside of
VANNOTATOR. To annotate a text, its tokens are typed by
mapping them onto an appropriate class of the data model.
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To this end, the touch gesture is used to select a correspond-
ing data type using the so-called controller (see the circular
menu in Figure 2). Then, a new DR is generated and visu-
alized as a cube. Any such cube has blue slots indicating
attributes to be set or relations to other DRs to be generated.
Green cubes indicate DRs that can be stored in the database.
After being stored, cubes change their color again (gray) to
indicate their reusability as persistent database objects (see
Figure 5).

4. Evaluation
A comparative evaluation was carried out to compare VAN-
NOTATOR with WebAnno (Spiekermann, 2017) by example
of anaphora resolution. The test group consisted of 14 sub-
jects and was divided so that one half solved the test with
WebAnno and the other with VANNOTATOR. Test persons
hat to annotate two texts (Task 1 and 2). In task 1, a text
was provided with predefined annotations which were to be
reconstructed by the test persons. The idea was that they
should get to know the respective framework and under-
stand the meaning of the annotation process. For WebAnno,
we provided the respective text on a large screen. In VAN-
NOTATOR, the sample text was presented at another place
within the annotation space. Thus, users had to move be-
tween the place displaying the sample and the one where
it had to be re-annotated (see Figure 5). In the second
task, users needed to annotate all anaphoric relations from
scratch. Note that VANNOTATOR can represent anaphoric
relations using hyperedges including a DR and all its men-
tions, while WebAnno generates sequences of reference-
equal expressions.
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Figure 4: Minimum, maximum and average times (in min-
utes) for solving the tasks.

Figure 4 shows the average, minimum and maximum time
taken by subjects to solve both tasks. It shows that test sub-
jects using VANNOTATOR take on average more than twice
as much time for the first text as the second one. However,
the annotation time for the second text was almost halved,
while it stagnated when using WebAnno. The average num-
ber of (in-)correctly annotated sections hardly differs be-
tween both frameworks.
The lower effort in using WebAnno is certainly due to the
fact that the subjects used mouse and keyboard daily for

years, in contrast to our new interface for which they lacked
such experiences. The remaining time-related difference
between both frameworks in executing Task 1 is probably
due to the higher number of actions currently required by
VANNOTATOR and the greater distance in the third dimen-
sion to be bridged by annotation actions. In any case of
Task 2, the processing time is considerably shortened.
Finally, a UMUX (Finstad, 2010) survey was completed by
the subjects. This produces a value in the range of 0 to 100,
where 100 indicates an optimal result. WebAnno yields 66
points, VANNOTATOR 70. This shows that both frameworks
have similarly good user ratings. Since some test persons
had little experience in using 3D technologies, we also ob-
served cases of motion sickness. In summary, our evalua-
tion shows that VANNOTATOR provides comparable results
to an established tool. VANNOTATOR performs slightly bet-
ter in UMUX, which is not yet an optimal result, but indi-
cates a potential of annotating in the third dimension.

Figure 5: Visualization of an annotated text document.

5. Conclusion & Future Work

We introduced VANNOTATOR, a tool for linguistic and mul-
timodal annotation in the third dimension. VANNOTATOR
is a first effort to show how annotations of linguistic objects
can be transposed into three dimensional action spaces. To
this end, we provided a virtualization of an interface to a
relational database model currently managed as a UIMA
database. In this way, relational entities as needed to anno-
tate propositional content can be annotated using pointing
gestures as well as iconic gestures. We also carried out a
comparative study by comparing VANNOTATOR with We-
bAnno in the context of annotating anaphoric relations. We
demonstrated that VANNOTATOR goes beyond its classical
2D competitor by not only allowing for annotating hyper-
edges. Rather, discourse referents are represented as 3D ob-
jects which can enter into recursive annotation actions and
interactions with the user. Future work aims at enabling
collaborative work of different annotators at the same time
on the same document in the same space. In addition, we
aim at extending the annotation of multimedia content in
terms of image segmentation so that segments of images
can serve as discourse referents. Finally, we will integrate
TextImager (Hemati et al., 2016) into VANNOTATOR so that
text to be annotated is mainly preprocessed.
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