Title |
ATLIS: Identifying Locational Information in Text Automatically |
Authors |
John Vogel, Marc Verhagen and James Pustejovsky |
Abstract |
ATLIS (short for ATLIS Tags Locations in Strings) is a tool being developed using a maximum-entropy machine learning model for automatically identifying information relating to spatial and locational information in natural language text. It is being developed in parallel with the ISO-Space standard for annotation of spatial information (Pustejovsky, Moszkowicz & Verhagen 2011). The goal of ATLIS is to be able to take in a document as raw text and mark it up with ISO-Space annotation data, so that another program could use the information in a standardized format to reason about the semantics of the spatial information in the document. The tool (as well as ISO-Space itself) is still in the early stages of development. At present it implements a subset of the proposed ISO-Space annotation standard: it identifies expressions that refer to specific places, as well as identifying prepositional constructions that indicate a spatial relationship between two objects. In this paper, the structure of the ATLIS tool is presented, along with preliminary evaluations of its performance. |
Topics |
Corpus (creation, annotation, etc.), Tools, systems, applications, Word Sense Disambiguation |
Full paper |
ATLIS: Identifying Locational Information in Text Automatically |
Bibtex |
@InProceedings{VOGEL12.1022,
author = {John Vogel and Marc Verhagen and James Pustejovsky}, title = {ATLIS: Identifying Locational Information in Text Automatically}, booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)}, year = {2012}, month = {may}, date = {23-25}, address = {Istanbul, Turkey}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis}, publisher = {European Language Resources Association (ELRA)}, isbn = {978-2-9517408-7-7}, language = {english} } |