Summary of the paper

Title ATLIS: Identifying Locational Information in Text Automatically
Authors John Vogel, Marc Verhagen and James Pustejovsky
Abstract ATLIS (short for “ ATLIS Tags Locations in Strings”) is a tool being developed using a maximum-entropy machine learning model for automatically identifying information relating to spatial and locational information in natural language text. It is being developed in parallel with the ISO-Space standard for annotation of spatial information (Pustejovsky, Moszkowicz & Verhagen 2011). The goal of ATLIS is to be able to take in a document as raw text and mark it up with ISO-Space annotation data, so that another program could use the information in a standardized format to reason about the semantics of the spatial information in the document. The tool (as well as ISO-Space itself) is still in the early stages of development. At present it implements a subset of the proposed ISO-Space annotation standard: it identifies expressions that refer to specific places, as well as identifying prepositional constructions that indicate a spatial relationship between two objects. In this paper, the structure of the ATLIS tool is presented, along with preliminary evaluations of its performance.
Topics Corpus (creation, annotation, etc.), Tools, systems, applications, Word Sense Disambiguation
Full paper ATLIS: Identifying Locational Information in Text Automatically
Bibtex @InProceedings{VOGEL12.1022,
  author = {John Vogel and Marc Verhagen and James Pustejovsky},
  title = {ATLIS: Identifying Locational Information in Text Automatically},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
Powered by ELDA © 2012 ELDA/ELRA