Summary of the paper

Title Causal analysis of task completion errors in spoken music retrieval interactions
Authors Sunao Hara, Norihide Kitaoka and Kazuya Takeda
Abstract In this paper, we analyze the causes of task completion errors in spoken dialog systems, using a decision tree with N-gram features of the dialog to detect task-incomplete dialogs. The dialog for a music retrieval task is described by a sequence of tags related to user and system utterances and behaviors. The dialogs are manually classified into two classes: completed and uncompleted music retrieval tasks. Differences in tag classification performance between the two classes are discussed. We then construct decision trees which can detect if a dialog finished with the task completed or not, using information gain criterion. Decision trees using N-grams of manual tags and automatic tags achieved 74.2% and 80.4% classification accuracy, respectively, while the tree using interaction parameters achieved an accuracy rate of 65.7%. We also discuss more details of the causality of task incompletion for spoken dialog systems using such trees.
Topics Dialogue, Corpus (creation, annotation, etc.), Speech resource/database
Full paper Causal analysis of task completion errors in spoken music retrieval interactions
Bibtex @InProceedings{HARA12.1059,
  author = {Sunao Hara and Norihide Kitaoka and Kazuya Takeda},
  title = {Causal analysis of task completion errors in spoken music retrieval interactions},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
Powered by ELDA © 2012 ELDA/ELRA