Summary of the paper

Title Open-Source Boundary-Annotated Corpus for Arabic Speech and Language Processing
Authors Claire Brierley, Majdi Sawalha and Eric Atwell
Abstract A boundary-annotated and part-of-speech tagged corpus is a prerequisite for developing phrase break classifiers. Boundary annotations in English speech corpora are descriptive, delimiting intonation units perceived by the listener. We take a novel approach to phrase break prediction for Arabic, deriving our prosodic annotation scheme from Tajwīd (recitation) mark-up in the Qur'an which we then interpret as additional text-based data for computational analysis. This mark-up is prescriptive, and signifies a widely-used recitation style, and one of seven original styles of transmission. Here we report on version 1.0 of our Boundary-Annotated Qur'an dataset of 77430 words and 8230 sentences, where each word is tagged with prosodic and syntactic information at two coarse-grained levels. In (Sawalha et al., 2012), we use the dataset in phrase break prediction experiments. This research is part of a larger-scale project to produce annotation schemes, language resources, algorithms, and applications for Classical and Modern Standard Arabic.
Topics Prosody, Corpus (creation, annotation, etc.), Text mining
Full paper Open-Source Boundary-Annotated Corpus for Arabic Speech and Language Processing
Bibtex @InProceedings{BRIERLEY12.240,
  author = {Claire Brierley and Majdi Sawalha and Eric Atwell},
  title = {Open-Source Boundary-Annotated Corpus for Arabic Speech and Language Processing},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
Powered by ELDA © 2012 ELDA/ELRA