Summary of the paper

Title Domain-specific vs. Uniform Modeling for Coreference Resolution
Authors Olga Uryupina and Massimo Poesio
Abstract Several corpora annotated for coreference have been made available in the past decade. These resources differ with respect to their size and the underlying structure: the number of domains and their similarity. Our study compares domain-specific models, learned from small heterogeneous subsets of the investigated corpora, against uniform models, that utilize all the available data. We show that for knowledge-poor baseline systems, domain-specific and uniform modeling yield same results. Systems, relying on large amounts of linguistic knowledge, however, exhibit differences in their performance: with all the designed features in use, domain-specific models suffer from over-fitting, whereas with pre-selected feature sets they tend to outperform union models.
Topics Anaphora, Coreference, Discourse annotation, representation and processing
Full paper Domain-specific vs. Uniform Modeling for Coreference Resolution
Bibtex @InProceedings{URYUPINA12.944,
  author = {Olga Uryupina and Massimo Poesio},
  title = {Domain-specific vs. Uniform Modeling for Coreference Resolution},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
Powered by ELDA © 2012 ELDA/ELRA