Summary of the paper

Title The ML4HMT Workshop on Optimising the Division of Labour in Hybrid Machine Translation
Authors Christian Federmann, Eleftherios Avramidis, Marta R. Costa-Jussà, Josef van Genabith, Maite Melero and Pavel Pecina
Abstract We describe the “Shared Task on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid Machine Translation” (ML4HMT) which aims to foster research on improved system combination approaches for machine translation (MT). Participants of the challenge are requested to build hybrid translations by combining the output of several MT systems of different types. We first describe the ML4HMT corpus used in the shared task, then explain the XLIFF-based annotation format we have designed for it, and briefly summarize the participating systems. Using both automated metrics scores and extensive manual evaluation, we discuss the individual performance of the various systems. An interesting result from the shared task is the fact that we were able to observe different systems winning according to the automated metrics scores when compared to the results from the manual evaluation. We conclude by summarising the first edition of the challenge and by giving an outlook to future work.
Topics Machine Translation, SpeechToSpeech Translation, Multilinguality, Statistical and machine learning methods
Full paper The ML4HMT Workshop on Optimising the Division of Labour in Hybrid Machine Translation
Bibtex @InProceedings{FEDERMANN12.996,
  author = {Christian Federmann and Eleftherios Avramidis and Marta R. Costa-Jussà and Josef van Genabith and Maite Melero and Pavel Pecina},
  title = {The ML4HMT Workshop on Optimising the Division of Labour in Hybrid Machine Translation},
  booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
  year = {2012},
  month = {may},
  date = {23-25},
  address = {Istanbul, Turkey},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Uğur Doğan and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-7-7},
  language = {english}
 }
Powered by ELDA © 2012 ELDA/ELRA