Summary of the paper

Title Automatic Refinement of Syntactic Categories in Chinese Word Structures
Authors Jianqiang Ma
Abstract Annotated word structures are useful for various Chinese NLP tasks, such as word segmentation, POS tagging and syntactic parsing. Chinese word structures are often represented by binary trees, the nodes of which are labeled with syntactic categories, due to the syntactic nature of Chinese word formation. It is desirable to refine the annotation by labeling nodes of word structure trees with more proper syntactic categories so that the combinatorial properties in the word formation process are better captured. This can lead to improved performances on the tasks that exploit word structure annotations. We propose syntactically inspired algorithms to automatically induce syntactic categories of word structure trees using POS tagged corpus and branching in existing Chinese word structure trees. We evaluate the quality of our annotation by comparing the performances of models based on our annotation and another publicly available annotation, respectively. The results on two variations of Chinese word segmentation task show that using our annotation can lead to significant performance improvements.
Topics Morphology, Lexicon, Lexical Database
Full paper Automatic Refinement of Syntactic Categories in Chinese Word Structures
Bibtex @InProceedings{MA14.1158,
  author = {Jianqiang Ma},
  title = {Automatic Refinement of Syntactic Categories in Chinese Word Structures},
  booktitle = {Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)},
  year = {2014},
  month = {may},
  date = {26-31},
  address = {Reykjavik, Iceland},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Hrafn Loftsson and Bente Maegaard and Joseph Mariani and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {978-2-9517408-8-4},
  language = {english}
 }
Powered by ELDA © 2014 ELDA/ELRA