Evaluation of text summarization approaches have been mostly based on metrics that measure similarities of system generated summaries with a set of human written gold-standard summaries. The most widely used metric in summarization evaluation has been the ROUGE family. ROUGE solely relies on lexical overlaps between the terms and phrases in the sentences; therefore, in cases of terminology variations and paraphrasing, ROUGE is not as effective. Scientific article summarization is one such case that is different from general domain summarization (e.g. newswire data). We provide an extensive analysis of ROUGE's effectiveness as an evaluation metric for scientific summarization; we show that, contrary to the common belief, ROUGE is not much reliable in evaluating scientific summaries. We furthermore show how different variants of ROUGE result in very different correlations with the manual Pyramid scores. Finally, we propose an alternative metric for summarization evaluation which is based on the content relevance between a system generated summary and the corresponding human written summaries. We call our metric SERA (Summarization Evaluation by Relevance Analysis). Unlike ROUGE, SERA consistently achieves high correlations with manual scores which shows its effectiveness in evaluation of scientific article summarization.
@InProceedings{COHAN16.1144,
author = {Arman Cohan and Nazli Goharian}, title = {Revisiting Summarization Evaluation for Scientific Articles}, booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)}, year = {2016}, month = {may}, date = {23-28}, location = {Portorož, Slovenia}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis}, publisher = {European Language Resources Association (ELRA)}, address = {Paris, France}, isbn = {978-2-9517408-9-1}, language = {english} }