Social media outlets are providing new opportunities for harvesting valuable resources. We present a novel approach for mining data from Twitter for the purpose of building transliteration resources and systems. Such resources are crucial in translation and retrieval tasks. We demonstrate the benefits of the approach on Arabic to English transliteration. The contribution of this approach includes the size of data that can be collected and exploited within the span of a limited time; the approach is very generic and can be adopted to other languages and the ability of the approach to cope with new transliteration phenomena and trends. A statistical transliteration system built using this data improved a comparable system built from Wikipedia wikilinks data.
@InProceedings{MUBARAK16.171,
author = {Hamdy Mubarak and Ahmed Abdelali}, title = {Arabic to English Person Name Transliteration using Twitter}, booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)}, year = {2016}, month = {may}, date = {23-28}, location = {Portorož, Slovenia}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis}, publisher = {European Language Resources Association (ELRA)}, address = {Paris, France}, isbn = {978-2-9517408-9-1}, language = {english} }