Summary of the paper

Title A Large-scale Recipe and Meal Data Collection as Infrastructure for Food Research
Authors Jun Harashima, Michiaki Ariga, Kenta Murata and Masayuki Ioki
Abstract Everyday meals are an important part of our daily lives and, currently, there are many Internet sites that help us plan these meals. Allied to the growth in the amount of food data such as recipes available on the Internet is an increase in the number of studies on these data, such as recipe analysis and recipe search. However, there are few publicly available resources for food research; those that do exist do not include a wide range of food data or any meal data (that is, likely combinations of recipes). In this study, we construct a large-scale recipe and meal data collection as the underlying infrastructure to promote food research. Our corpus consists of approximately 1.7 million recipes and 36000 meals in cookpad, one of the largest recipe sites in the world. We made the corpus available to researchers in February 2015 and as of February 2016, 82 research groups at 56 universities have made use of it to enhance their studies.
Topics Corpus (Creation, Annotation, etc.), LR Infrastructures and Architectures, Standards for LRs
Full paper A Large-scale Recipe and Meal Data Collection as Infrastructure for Food Research
Bibtex @InProceedings{HARASHIMA16.320,
  author = {Jun Harashima and Michiaki Ariga and Kenta Murata and Masayuki Ioki},
  title = {A Large-scale Recipe and Meal Data Collection as Infrastructure for Food Research},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portorož, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA