Summary of the paper

Title Detecting Optional Arguments of Verbs
Authors Andras Kornai, Dávid Márk Nemeskey and Gábor Recski
Abstract We propose a novel method for detecting optional arguments of Hungarian verbs using only positive data. We introduce a custom variant of collexeme analysis that explicitly models the noise in verb frames. Our method is, for the most part, unsupervised: we use the spectral clustering algorithm described in Brew and Schulte in Walde (2002) to build a noise model from a short, manually verified seed list of verbs. We experimented with both raw count- and context-based clusterings and found their performance almost identical. The code for our algorithm and the frame list are freely available at http://hlt.bme.hu/en/resources/tade.
Topics Statistical and Machine Learning Methods, Lexicon, Lexical Database, Grammar and Syntax
Full paper Detecting Optional Arguments of Verbs
Bibtex @InProceedings{KORNAI16.330,
  author = {Andras Kornai and Dávid Márk Nemeskey and Gábor Recski},
  title = {Detecting Optional Arguments of Verbs},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portorož, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA