Summary of the paper

Title Can Tweets Predict TV Ratings?
Authors Bridget Sommerdijk, Eric Sanders and Antal van den Bosch
Abstract We set out to investigate whether TV ratings and mentions of TV programmes on the Twitter social media platform are correlated. If such a correlation exists, Twitter may be used as an alternative source for estimating viewer popularity. Moreover, the Twitter-based rating estimates may be generated during the programme, or even before. We count the occurrences of programme-specific hashtags in an archive of Dutch tweets of eleven popular TV shows broadcast in the Netherlands in one season, and perform correlation tests. Overall we find a strong correlation of 0.82; the correlation remains strong, 0.79, if tweets are counted a half hour before broadcast time. However, the two most popular TV shows account for most of the positive effect; if we leave out the single and second most popular TV shows, the correlation drops to being moderate to weak. Also, within a TV show, correlations between ratings and tweet counts are mostly weak, while correlations between TV ratings of the previous and next shows are strong. In absence of information on previous shows, Twitter-based counts may be a viable alternative to classic estimation methods for TV ratings. Estimates are more reliable with more popular TV shows.
Topics Social Media Processing, Other
Full paper Can Tweets Predict TV Ratings?
Bibtex @InProceedings{SOMMERDIJK16.47,
  author = {Bridget Sommerdijk and Eric Sanders and Antal van den Bosch},
  title = {Can Tweets Predict TV Ratings?},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portorož, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA