Summary of the paper

Title Segmenting Hashtags using Automatically Created Training Data
Authors Arda Celebi and Arzucan Özgür
Abstract Hashtags, which are commonly composed of multiple words, are increasingly used to convey the actual messages in tweets. Understanding what tweets are saying is getting more dependent on understanding hashtags. Therefore, identifying the individual words that constitute a hashtag is an important, yet a challenging task due to the abrupt nature of the language used in tweets. In this study, we introduce a feature-rich approach based on using supervised machine learning methods to segment hashtags. Our approach is unsupervised in the sense that instead of using manually segmented hashtags for training the machine learning classifiers, we automatically create our training data by using tweets as well as by automatically extracting hashtag segmentations from a large corpus. We achieve promising results with such automatically created noisy training data.
Topics Social Media Processing, Statistical and Machine Learning Methods, Information Extraction, Information Retrieval
Full paper Segmenting Hashtags using Automatically Created Training Data
Bibtex @InProceedings{CELEBI16.708,
  author = {Arda Celebi and Arzucan Özgür},
  title = {Segmenting Hashtags using Automatically Created Training Data},
  booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)},
  year = {2016},
  month = {may},
  date = {23-28},
  location = {Portorož, Slovenia},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis},
  publisher = {European Language Resources Association (ELRA)},
  address = {Paris, France},
  isbn = {978-2-9517408-9-1},
  language = {english}
 }
Powered by ELDA © 2016 ELDA/ELRA