Emojis allow us to describe objects, situations and even feelings with small images, providing a visual and quick way to communicate. In this paper, we analyse emojis used in Twitter with distributional semantic models. We retrieve 10 millions tweets posted by USA users, and we build several skip gram word embedding models by mapping in the same vectorial space both words and emojis. We test our models with semantic similarity experiments, comparing the output of our models with human assessment. We also carry out an exhaustive qualitative evaluation, showing interesting results.
@InProceedings{BARBIERI16.735,
author = {Francesco Barbieri and Francesco Ronzano and Horacio Saggion}, title = {What does this Emoji Mean? A Vector Space Skip-Gram Model for Twitter Emojis}, booktitle = {Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016)}, year = {2016}, month = {may}, date = {23-28}, location = {Portorož, Slovenia}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Sara Goggi and Marko Grobelnik and Bente Maegaard and Joseph Mariani and Helene Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis}, publisher = {European Language Resources Association (ELRA)}, address = {Paris, France}, isbn = {978-2-9517408-9-1}, language = {english} }